

Experimental Evaluation of a
Coarse-Grained Switch Scheduler

Charlie Wiseman
Washington University

wiseman@wustl.edu

Jon Turner
Washington University

jon.turner@wustl.edu

Ken Wong
Washington University

kenw@arl.wustl.edu

Brandon Heller
Washington University

bdh4@arl.wustl.edu

ABSTRACT
Modern high performance routers rely on sophisticated in-
terconnection networks to meet ever increasing demands
on capacity. Regulating the flow of packets through these
interconnects is critical to providing good performance,
particularly in the presence of extreme traffic patterns that
result in sustained overload at output ports. Previous stud-
ies have used a combination of analysis and idealized sim-
ulations to show that coarse-grained scheduling of traffic
flows can be effective in preventing congestion, while en-
suring high utilization. In this paper, we study the per-
formance of a coarse-grained scheduler in a real router
with a scalable architecture similar to those found in high
performance commercial systems. Our results are obtained
by taking fine-grained measurements of an operating
router that provide a detailed picture of how the scheduling
algorithm behaves under a variety of conditions, giving a
more complete and realistic understanding of the short
time-scale dynamics than previous studies could provide.
We also examine computation and communication over-
heads of our scheduler implementation to assess its re-
source usage and to provide the basis for an analysis of
how the resource usage scales with system size.

1.INTRODUCTION
Modern high-end routers such as Cisco's CRS-1 [4] have
hundreds or thousands of ports capable of supporting link
speeds of 10 Gb/s or more. To ensure scalability, many
router architectures utilize internally buffered, multistage
interconnection networks that operate with a small speed
advantage relative to the external links. While it is easy to
design such an interconnect to work well under benign
traffic conditions, it is also important for them to operate
well under more extreme conditions as the unregulated
nature of Internet traffic leads to extreme traffic conditions
that can (and do) occur on a fairly routine basis. The key
property that an interconnect is expected to have is that it
be nonblocking, which essentially means that congestion at
some output ports should not affect traffic going to other,
uncongested outputs. One way to ensure the traffic isola-
tion needed to provide nonblocking performance is to
equip the system with a scheduler that controls the flow of
data through the interconnect with the explicit goal of
avoiding internal congestion, while moving traffic through
the interconnect as quickly as possible. The challenge in
designing such a scheduler is to ensure good performance

under extreme traffic conditions for systems that may have
tens to thousands of ports, while keeping the resources
used for scheduling to a reasonably small fraction of the
overall system cost.

Scheduling for large scale routers borrows heavily from
the methods that have been developed for smaller systems
using crossbar interconnects [1,2,3,8,13]. Crossbar sys-
tems are typically limited to a few tens of ports, making it
practical to do fine-grained scheduling on a packet-by-
packet basis. In such systems, the scheduler matches in-
puts to outputs during each packet scheduling interval.
The crossbar typically operates with a small constant spee-
dup S relative to the external links, which means that it
can forward S packets for every 1 packet arrival. Most
evaluation of schedulers is limited to theoretical analysis
and simulation when the speedup is 2 or more. However,
the interface bandwidth between conventional line cards
and the interconnect often limits the speedup to be signi-
ficantly less than 2.

For larger systems, the fine-grained scheduling method
used in crossbars becomes impractical, since it is difficult
to make scheduling decisions for large numbers of ports in
the short time available for scheduling. For example,
routers supporting 10 Gb/s links are typically implemented
using cell-based interconnects that require between 25 and
40 ns to forward cells. This sets the limit on the time a
fine-grained scheduler can spend making scheduling de-
cisions. Clever hardware architectures can make this prac-
tical for systems of modest size, but these approaches are
not cost effective when scaled up to larger systems.

The use of multistage interconnection networks with
internal buffering makes it possible to use a more coarse-
grained scheduling approach [10,11]. Instead of attempt-
ing to make scheduling decisions on a packet-by-packet
basis, coarse-grained scheduling simply regulates the rates
at which each input sends to each output over a scheduling
interval that is much longer than the individual cell time.
Scheduling periods of tens to hundreds of microseconds
are reasonable choices since the interconnect can be
equipped with sufficient buffering to handle shorter term
contention and the delays associated with such coarse-
grained scheduling are orders of magnitude smaller than
the intrinsic end-to-end delays experienced by packets
traveling across wide-area networks.

- 1 -

mailto:jon.turner@wustl.edu
mailto:bdh4@arl.wustl.edu
mailto:kenw@arl.wustl.edu

Coarse-grained scheduling borrows many ideas from
crossbar scheduling, such as virtual output queues (VOQs),
where each input maintains a separate queue for each out-
put. In addition, many of the scheduling strategies de-
veloped for crossbars have natural counterparts in the
coarse-grained context. Because coarse-grained schedulers
are designed for larger system configurations, they are also
typically implemented in a distributed fashion, in contrast
to the centralized approach most often used for crossbars.
Typically this means that each port has its own port pro-
cessor capable of running some part of the scheduling al-
gorithm and has mechanisms for sharing any necessary in-
formation with other ports. The collection of rates chosen
by this distributed scheduling process must ensure that no
single port is assigned traffic such that it causes the switch
to become congested.

In [11], some basic distributed, coarse-grained schedul-
ing algorithms were developed and studied primarily using
simulation. [10] included some limited measurement data
of a real system, but the measurement methods used re-
quired that the system be evaluated at a small fraction of
its normal operational speed. That study introduced the
idea of using stress tests to evaluate the schedulers under
extreme traffic conditions.

In this paper, we provide a more comprehensive view
of a particular coarse-grained scheduling algorithm. In
particular, the contributions of this work include an imple-
mentation of one practical scheduler in the extensible
routers of the Open Networking Laboratory [7]. A detailed
performance characterization of this real implementation
is provided. To carry out this evaluation, we developed
methods for accurate measurement of switch scheduling
algorithms at a time scale that is smaller than the schedul-
ing interval. These mechanisms allow fine-grained exam-
ination of the system's dynamic behavior, which leads to a
much more precise accounting of the performance impact
caused by the coarse granularity of the scheduler. We also
present an analysis of the scaling issues associated with
distributed scheduler implementations and show how to
extend the implementations to make them substantially
more scalable.

Section 2 discusses pertinent previous work and then
gives the algorithm and implementation details of the
scheduler studied in this paper. Section 3 describes our
experimental setup, including our traffic generation and
synchronization methods and our sub-millisecond meas-
urement agents. Section 4 introduces the traffic pattern we
use as a stress test, evaluates the scheduler under the test,
and shows that with a moderate speedup the scheduler is
able to avoid throughput loss. Section 5 focuses on short
time-scale responses to bursty traffic patterns. Section 6
provides a study of the communication and computational
characteristics of the scheduler and discusses the scalabil-
ity of our current implementation along with potential
modifications to increase that scalability.

2.BACKGROUND
The coarse-grained scheduler we will be evaluating in this
paper is based on the Lowest Occupancy Output First Al-
gorithm (LOOFA) for fine-grained crossbar scheduling
originally presented in [6]. The basic tenant of LOOFA is
that priority should be given to VOQs for which the associ-
ated output queues will empty the soonest. In other words,
the goal of the algorithm is to avoid underflow at the out-
puts by preferentially choosing to send data to those out-
puts with the lowest output queue occupancy. Each input
iterates through the outputs in increasing order of output
queue occupancy and requests that it be allowed to send a
cell. Outputs grant permission to one input among the re-
quests. This process repeats until no more matches can be
made or the time alloted for the scheduling decision is
over.

Batch LOOFA (BLOOFA) [11] is the coarse-grained
version of LOOFA. As such, the basic idea is the same as
LOOFA in that packets in VOQs destined for outputs with
the smallest output-side backlog are processed first, but in-
stead of making decisions for individual packets each dis-
tributed scheduling component sets rate limits on the
VOQs for the duration of the scheduling period. As cross-
bar scheduling can be reduced to finding matchings in the
bipartite graph representation of the crossbar, coarse-
grained scheduling can be reduced to finding blocking
flows in acyclic flow networks. Existing algorithms for
finding such flows can be adapted to produce a centralized
implementation of BLOOFA, but for reasons of scalability,
a distributed implementation is generally preferred. Dis-
tributed BLOOFA (DBL) is a scalable variant of BLOOFA
that approximates its behavior, while distributing the rel-
evant computation among the ports. This is accomplished
in large part by the use of backlog-proportional allocation
of VOQ rates based on the total share each port has of all
traffic in the system destined to a particular output. To
make this precise, we introduce some useful notation be-
fore describing the algorithm in detail.

Let B(i,j) be the number of bytes in the VOQ at input i
for output j, and B(j) be the total number of bytes in queues
at output j awaiting transmission into the link. The nota-
tion B(+,j) represents the sum of B(i,j) for all i, that is, the
total input-side backlog for output j. Recall that S denotes
the speedup, let L be the link capacity in b/s, and let T be
the scheduling period in seconds. Finally, let N be the
number of ports.

In DBL, each port i sends a message to each port j con-
taining the current value of B(i,j) at the start of the
scheduling process. Each port j then sends a message back
to every other port containing B(j) and B(+,j). During
each scheduling interval, each input can send a total of
SLT bits into the switch and each output can receive at
most SLT bits. Backlog-proportional allocation is used to
decide what share of each output’s bandwidth is allocated
to each input. Specifically, input i is allowed to send up to
SLT×B(i,j)/B(+,j) bits to output j. Each port allocates its

- 2 -

own input-side bandwidth by building a list of outputs
ordered by increasing values of B(j). Port i traverses this
list assigning as much bandwidth as is allowed to each out-
put in the list, until it has allocated all of its input-side
bandwidth. The end result of this process is a set of VOQ
rates that gives preference to outputs with small output-
side backlogs, while ensuring that no output receives
enough traffic to cause congestion in the interconnect.
Note that the implementation described requires that each
port send and receive 2N messages.

Evaluation of DBL has until now been limited to simu-
lation, but the results and analytical basis make a good
case for further study. As such, it was our choice for an
actual implementation. Unfortunately, there are not many
options when it comes to choosing a router for our imple-
mentation. Most commercially available routers offer no
way of extending their functionality in the way we need,
and it would be time consuming to build our own router
solely to test the scheduler. Instead, we have turned to the
Open Network Laboratory (ONL) experimental testbed. A
detailed description of ONL can be found at [9], but a brief
overview of the relevant architectural features is given
here.

The ONL routers are built around a scalable ATM
switch core designed to support 1 Gb/s external links and
provide an internal bandwidth that is roughly twice the ex-
ternal bandwidth. The ATM core has been augmented with
port processors which implement IP route lookup, packet
classification, and buffering. As shown in Figure 1, each
port processor is composed of a Smart Port Card (SPC)
that has an embedded processor for special processing
needs and a Field Programmable Port Extender (FPX) that
contains a large FPGA configured to handle all the normal
packet processing functions. The FPX houses all queueing
for the port and provides an interface for the SPC to read
queue lengths and set VOQ rates (indicated by the dashed

line in Figure 1). The output queues can also be rate con-
trolled to emulate link speeds less than the physical line
rate. The general purpose processor available on the SPC
is a 500 MHz Pentium III that provides a software plugin
environment running on top of a modified NetBSD 3 ker-
nel which allows users to write their own custom code to
process packets on the router. It is also responsible for
other control and configuration on that port, including any
distributed scheduling mechanisms. The SPC kernel is
configured to receive clock interrupts every 500 μs, which
puts an effective lower bound on the scheduling period.

For the SPC implementation of DBL, the inter-port
messages containing backlog information have been modi-
fied to take advantage of certain features of the ONL router
architecture. In particular, since the ONL routers are
equipped with just eight ports, and since the ATM switch
core supports a simple multicast mechanism, the DBL im-
plementation sends complete VOQ backlog information
and output queue lengths in a single cell that is multicast
to all ports. Thus, in each scheduling interval, each port
sends one message and receives N. In addition, because
the SPCs are at different ports and operate off individual
clocks, the DBL implementation in the ONL routers allows
each port to run asynchronously with respect to the other
ports. Each port maintains a copy of the most recent VOQ
and output queue length information received from other
ports, and periodically uses this stored information to com-
pute new VOQ rates. The VOQ rates are computed based
on the DBL algorithm, with some additional refinements,
which we now describe in detail.

At the start of each scheduling interval, the SPC at port
i retrieves B(i,j) for all outputs j as well as B(i) from the
FPX and sends a single message into the switch with this
information. The switch delivers a copy of this message to
all of the other ports. Each port uses the most recent in-
formation it has received to periodically compute new
VOQ rates. This involves computing B(+,j) for all j from
the stored VOQ lengths. Outputs are ordered by slightly
more complex criteria designed to moderate fluctuations
between assigned rates when output backlogs are similar.
Specifically, output h comes before output k in the order if
and only if one of the following conditions is true:

1. B(k) – B(h) > C (⇔ B(h) – B(k) < −C)

2. (I) B(h) – B(k) < C and

 (II) B(h) – B(k) < B(+,h) – B(+,k)

C represents a fixed cutoff value currently set to be
SLT/4. The intuition behind this is straight forward and
most easily explained with the help of Figure 2. If B(h) is
enough smaller than B(k) (condition 1), then h comes be-
fore k in the order. On the other hand, if B(h) is enough
larger than B(k) (condition 2I), then k comes before h. In
the region where B(h) and B(k) are close to one another
(condition 2II), preference is given to the output with the
larger total input-side backlog. Figure 2 illustrates this by
highlighting the values of B(h) – B(k) that will result in h

- 3 -

Figure 1. Overview of an ONL router.

coming before k in the output order, given a particular
value of B(+,h) – B(+,k). For example, the middle line in
Figure 2 shows an example where condition 2II will de-
termine the output ordering if B(h) and B(k) are within |C|
bytes of one another. In all cases, ties are broken by port
number with smaller numbers coming before larger ones.

Once the output order has been computed, capacity is as-
signed to VOQs in order, much as in standard DBL except
that a small percentage (around 1% per output) of the in-
put capacity is reserved and assigned to VOQs that would
otherwise receive less capacity. This is a small enhance-
ment that leads to better reaction times when previously
empty VOQs become active in the middle of the schedul-
ing period. We also replace the pure backlog-proportional
bandwidth assignment with a two pass process. This pre-
vents an anomalous characteristic of the DBL algorithm,
which can cause an input to assign more bandwidth to one
of its VOQs than is needed to clear the entire backlog from
that VOQ. When this happens, the input-side bandwidth
can be fully allocated to VOQs that do not have much data
to send. The first pass limits each VOQ to the minimum
of its backlog-proportional allocation and the bandwidth
needed to fully clear its backlog within the scheduling in-
terval. In the second pass, inputs that were assigned less
than their backlog-proportional allocation in the first pass
are allowed to increase their share of the input bandwidth,
up to the backlog-proportional allocation. Although some
of these changes do make the algorithm more complex,
they boost the overall performance of the system for both
normal and extreme traffic by smoothing otherwise abrupt
behavior and improving reaction time to shifting traffic
patterns.

3.EXPERIMENTAL SETUP
In order to evaluate the scheduler in a meaningful way, we
needed to be able to take measurements many times per
scheduling period. Fortunately, the SPC plugin environ-
ment provides a means to do this. Plugins are composed
of normal C code that is compiled into a NetBSD kernel
module and then loaded onto the SPC to run. Filters can
be added to the port that direct packet flows to the plugin
for extra processing. For processing not driven by packet
arrivals, plugins also have the ability to register callback
functions with the kernel, much as the scheduler does.

We have implemented a measurement plugin that is
capable of recording VOQ and output queue lengths once
every 100 μs, VOQ rates once every 500 μs (that is, once
every scheduling period), and packet receive and transmit
counts once every 500 μs. All of the measurements are an-
notated with a timestamp read from the local microsecond-
accurate clock. Once the plugin is loaded onto an SPC, it
awaits a packet arrival to indicate that it should start tak-
ing measurements by registering a callback function that is
executed every 500 μs. Each time the callback runs, five
queue length measurements are retrieved by calls to the
provided plugin API. These measurements are spaced out
over the callback period to obtain values every 100 μs.

The time between the measurements is filled by a combin-
ation of busy-waiting and taking the VOQ and packet rate
measurements. Access to the current VOQ rates is
provided by an interface to the DBL code, and packet
counts are read from the FPX via another plugin API func-
tion. The SPC has enough memory to store over 10 s
worth of these measurements. After that time, the callback
is de-registered and all of the data are sent to the control
processor from which the results are easily accessible.

One instance of the plugin is run on each of ports 1
through 7 on the router. Port 0, which is connected to the
control processor, is not used as a data port in any of our
experiments. To relate results gathered from different plu-
gins, the clocks at different ports must be synchronized to
a granularity of less than 100 μs. This is straight forward
to do by taking advantage of certain features of the ONL
router. We use an existing multicast plugin on port 0 to
copy a single UDP packet sent from the control processor
to each other port. Each port has a filter setup to direct
this special packet to the measurement plugin. Unfortu-
nately, unpredictable start times can still occur if these
packets arrive while the scheduler is running because the
plugin will not be able to process the packet until the
scheduler is finished. To avoid this, we break the process
up into two parts. First, the scheduler is deactivated and
one packet is sent to each port via the multicast plugin.
When that packet arrives at the measurement plugin the
current local time is read and recorded as time zero. All
subsequent clock reads are adjusted to match this time
scale. Second, the scheduler is reactivated and given a
short time to stabilize before a another packet is sent that
actually begins the measurement process on each plugin.
To guard against clock drift these steps were repeated at
the beginning of every experiment.

We have verified that when the scheduler is not run-
ning and there is no other traffic in the system, the multic-
ast packets will arrive at the plugins on each port within
10 μs of one another. This verification was done by in-
stantiating simple 'echo' plugins on each port other than
port 0 and a slightly modified multicast plugin on port 0.
A single packet is sent from the control processor to the

- 4 -

Figure 2. Values of B(h)-B(k) for which h comes be-
fore k in the output order.

modified multicast plugin which copies the input packet to
each other port as normal. The echo plugins simply re-dir-
ect any received packets back to port 0 where they are pro-
cessed a second time by the modified multicast plugin. For
each packet re-arrival, the current time is recorded. The
spread of arrival times was never more than 10 μs.

The counterparts to the measurement facilities are the
data sources. Generating enough packets to saturate many
Gb/s links, particularly with small packets, can be challen-
ging. The brute force approach of aggregating flows from
scores of end hosts requires a large investment in ma-
chines for testing the capabilities of a single router. In-
stead, we leverage network processor technology. For
some time now, multi-core processors designed specifically
with network processing in mind have been available. One
example is the Intel IXP chip line [5], which has been in-
cluded on some PCI-based platforms such as the Radisys
ENP-2611 [12]. We have built a flexible packet genera-
tion platform on the ENP-2611 that is capable of nearly
saturating each of the three Gigabit Ethernet ports on the
card with packets of any size.

Each ENP-2611 has a single Intel IXP 2400 on board
which contains 8 Micro-Engine (ME) cores for packet pro-
cessing and one XScale ARM core that acts as the man-
agement processor. The high-level design of the packet
generator is actually very simple. As is standard for this
platform, one ME is dedicated to receiving packets and
one to transmitting packets. Three MEs are programmed
as timer blocks, where each timer block is responsible for
the packets that will leave one port. This is done by pre-
loading the packets that will be sent and configuring each
ME with the necessary information to compute inter-pack-
et delays for achieving the desired output rate. Finally,
one ME is used to process received packets and potentially
start packet flows based on those received packets, as de-
scribed below. Otherwise, all ME configuration and pack-
et flow control is handled by the XScale.

Three of these packet generators are used in our experi-
mental setup to connect to the seven open (non-control
processor) router ports. In order to fully stress the sched-
uler it is important to be able to start packet flows at each
port as closely together as possible. To facilitate this need,
the packet generator was built with an option to wait for a
packet arrival on one of its interfaces that then serves as
the start signal for the ports on that card. There is no gen-
eral purpose operating system running on the data path of
the packet generator and only minimal processing of pack-

ets before they reach the synchronization ME, so the time
between receiving the packet to acting on the packet is
consistent at μs granularity. To synchronize the separate
cards, each of the seven used ports on the three cards are
connected to a Gigabit Ethernet switch along with another
Linux PC. This PC sends a single Ethernet broadcast
frame that is placed in a particular VLAN such that it is
replicated by the switch once to each packet generator. We
have verified that this guarantees that the sources always
start within 15 μs of each other by sending packets back to
the PC and looking at the first packet arrival times. The
seven router ports are also connected to the external
switch. VLANs are used again here to ensure correct be-
havior by mapping each traffic generator port to a single
router port and placing them in a unique VLAN. This
setup is used for all experiments conducted in this paper.

4.EXTREME TRAFFIC EVALUATION
To study the performance of our implementation of DBL,
we start with an extreme traffic pattern. Although there is
no known provable worst-case traffic pattern for coarse-
grained schedulers, a number of these stress tests have
been developed that clearly probe their limits.

This stress test proceeds in M equal length phases and
requires M inputs and 2M−1 unique outputs. During each
phase, each input sends constantly to the same output and
only switches outputs when the phase changes. In the i-th
phase, M−i+1 inputs all target one output to overload it
and force its total input-side backlog to grow. These out-
puts are referred to as overloaded outputs. After each
phase, one input drops out of this pattern and begins send-
ing to a new unique output. Once an input has dropped
out it continues sending to the same output for the rest of
the stress test. These outputs are called continuous out-
puts.

Figure 3 shows the details of the specific instance of
the stress test used with the ONL router. During the first
phase, all active inputs send to the same output in order to
build up a large backlog for that output. In the second
phase, one input drops out and the other inputs simultan-
eously switch to a new output. The scheduler must quickly
start servicing the newly active outputs to avoid missed
transmission opportunities for those outputs while continu-
ing to ensure that the first output does not underflow. The
third phase proceeds similarly with another input dropping
out and the other two inputs switching together to a differ-
ent output. In the final phase the last two inputs each drop
out to new unique outputs. This creates an extremely chal-
lenging situation for the scheduler to overcome as there are
now four continuous outputs that have to be serviced con-
stantly to avoid underflow while simultaneously ensuring
that the backlogs for the overloaded outputs are cleared.

This test was designed specifically so that every packet
could be transmitted by the end of the final phase. For ex-
ample, if each phase lasts for 1 second then 4L bits will be
received during the first phase for the output that is being
overloaded and no other data arrive for that output. So

- 5 -

Figure 3. Stress test used with the ONL router.

long as the scheduler immediately assigns capacity to those
VOQs, there are four full phase times to get those 4L bits
across the interconnect and thus the output will have 4L
bits worth of capacity that could be used to send those
packets. The situation is similar for all the overloaded out-
puts. Each of the continuous outputs should be able to fin-
ish by the end of the final phase since they are never over-
loaded. However, if any of the output queues underflow at
any time because of contention for interconnect capacity or
poor scheduling decisions, then the ideal deadline will be
missed. The ratio of actual finish time to ideal finish time
is called the overshoot.

Figure 4 shows the performance of our DBL imple-
mentation under the stress test in which each phase lasts
for 10 ms, link rates are set to 900 Mb/s, and the speedup
is 1.2. To set the link rate, the packet generator produces
900 Mb/s of input traffic per link and the ONL router is set
to rate limit the traffic leaving each link to 900 Mb/s. The
results shown are for 50 byte UDP payload packets, but the
behavior is nearly identical when the same test is run for
packets of any size. The upper-left graph shows the total
input-side backlogs for each output. Each of the over-
loaded outputs (i.e., ports 2, 4, and 6) build backlogs as ex-
pected. The continuous outputs in phases 2 and 3 (ports 3
and 5) only build minuscule backlogs until the final phase
begins. At that point, however, all the continuous outputs
begin building significant input-side backlogs, which res-
ults in an overshoot of about 20%.

The bottom chart of Figure 4 shows the VOQ rates for
port 7 in cumulative form, i.e., +rate(7,j) represents the
sum of the VOQ rates at input 7 for outputs 0 through j.
The most striking feature is the extreme rate fluctuation
during the final phase of the test. Once the final phase be-
gins, the scheduler has to keep port 1 supplied with a
steady stream of packets while still clearing each of the
three input-side backlogs. By time 33, all of the output-
side backlogs have become small enough that they empty
within one scheduling period unless supplied with new
packets. The end result is that the scheduler enters a relat-
ively unstable state and tends to direct most of the capacity
to only one or two outputs during each scheduling period.
A similar test with a speedup of 1.5 also exhibits rate fluc-
tuations, but they are much less erratic.

A curious phenomenon exists around time 5 when all
of the rates except rate(7,2) suddenly decrease. To under-
stand why this occurs, consider the output queue length at
port 2 at that time, as shown in the upper right chart of
Figure 4. Recall that the output ordering scheme gives
preference to outputs with larger input-side backlogs when
the output-side backlogs are similar. At time 5, the output
backlog for port 2 grows past that cutoff value and moves
from the front of the order to the back of the order. The
second phase of VOQ rate assignments attempts to share
any left over input-side capacity fairly among each VOQ
based on the same output ordering. In this case, the VOQ
for output 2 is limited by output-side capacity and can not
take its share of the extra input-side capacity. As output 2
is now at the end of the output order, that capacity remains

- 6 -

Figure 4. Response for the stress test with S=1.2 and L=900 Mb/s.

unused. This also explains the feature at time 15, and
more generally why all of the input-side capacity is not al-
ways assigned. Multiple extra passes could be made to
continue assigning the extra capacity until it is all taken or
some fixed number of passes has elapsed. Perhaps a better
solution would be to re-order the outputs for the second
pass based on the amount of extra capacity that they could
use before reaching their output-side limits.

Another interesting feature occurs at time 25 when
rate(7,4) suddenly jumps by over 100 Mb/s. During this
third phase, port 7 has traffic for each of the three over-
loaded outputs. Based only on its share of the output-side
capacities for those ports, port 2 would get one quarter of
the input capacity, port 4 would get one third, and port 6
would get one half. The result is that port 7 becomes input
capacity constrained and so the output order determines
which of the three VOQs will not get its desired rate. By
examining the input and output backlog charts, we see that
at the beginning of the third phase the order of the over-
loaded outputs is 6,2,4. This follows because 6 has a much
smaller output backlog than the others and for outputs with
similar output backlogs and total input-side backlogs, ties
are broken by lower port number. Then at time 25, the
output backlog for 6 becomes much larger than the others
which changes the output order to be 2,4,6. Thus port 4 is
able to get its desired share while port 6 is not.

To see how our implementation of DBL performs with
varying values of speedup, we included a run-time config-
uration option in the scheduler that allows the speedup to
be changed. While this does not change the actual capa-
city of the switch interconnect, it effectively does so by
limiting the total rate at each input and the total rate
destined for each output to be no more than SL. So long as
SL is kept below the actual switch capacity then the system
will behave as expected, i.e., there will be no congestion in
the interconnect. The curve labeled 'stress test' in Figure 6
shows the overshoot as the speedup varies between 1 and
1.6. For speedups of 1.5 or larger, the overshoot becomes
negligible.

5.DYNAMIC TRAFFIC EVALUATION
It is also important to study the behavior of our DBL im-
plementation under more realistic, but still demanding,
traffic patterns. To that end, we now focus on responses to
two types of bursty traffic.

The first test is a simple one designed to examine the
short time-scale response to a sudden burst of traffic from
all inputs destined for the same output. In particular, ports
2 through 7 simultaneously receive a small number of 50
byte UDP payload packets destined for port 1. Although
burst lengths between 100 μs and 500 μs were tested, a
burst length of 250 μs most often resulted in the largest
overshoot primarily due to the asynchronous operation of
the scheduler. Figure 5 shows the scheduler's response to
this traffic pattern. The right chart shows how the VOQ
rates change over the course of the burst. Ideally, the rates
would all start and end at SL/8 Mb/s (the nominal rate
when the system is idle) and rise to SL/6 Mb/s (each input
equally sharing the capacity to output 1) until the burst
was finished. Instead, as the scheduler on each port runs
for the first time since the burst began, the rates are set to
near zero for one scheduling interval before rising to the
expected rate. This is actually due to a mechanism in our
implementation for safe asynchronous operation where
each port delays using its own current queue length meas-
urements for one scheduling interval (it still sends the cur-
rent values to the other ports). This forces the scheduler to
wait until every port has had a chance to send queue length
updates. To understand the necessity for such behavior,
consider what might happen otherwise. The first port that
runs the scheduler when traffic arrives for a previously idle
output will believe that is has the entire input-side backlog
for that output and could potentially assign the entire
switch capacity to that VOQ. Now consider that all of the
ports might run the scheduler within a few μs of one an-
other. If a burst arrived at every input for one output, that
output would be assigned N times its capacity! The safety
mechanism ensures that each port will see the size of the
backlogs from each other port before reacting. As Figure 5
shows, however, this mechanism has an unintended draw-

- 7 -

Figure 6. Overshoot of various traffic patterns.

Figure 5. Response to a sudden burst of traffic.

back. Once the input-side backlogs begin to clear, this
delayed reaction causes each input to believe that it now
has a larger input backlog for the output than it actually
does. This results in VOQ rates being set too high, and
the output is ultimately over-subscribed before settling
back to the nominal rate. It is worth noting that this beha-
vior would be nearly impossible to detect without our fine-
grained measurement infrastructure.

The same test was run for a range of speedups from 1
to 1.6, where each test consisted of 20 trials for that spee-
dup value. The maximum overshoot is displayed as the
'sudden burst' curve in Figure 6. The results are similar to
those from the stress test with the notable exception that
performance under the sudden burst test is actually worse
for mid-range speedups.

The second bursty traffic pattern we use is similar to
one from [11]. One output, the subject, is chosen to re-
ceive a steady stream of packets at the line rate during the
entire test. The input that is currently sending to the sub-
ject changes randomly over the course of the test, sending
for an exponentially distributed time before a new input is
selected. The other inputs each independently choose an
output other than the subject and continue sending to that
output for an exponentially distributed amount of time be-
fore moving to a new output. This process leads to
roughly one quarter of the outputs being overloaded at any

given time. Ideally, the scheduler will supply the subject
with a steady stream of packets over the entire test in order
to keep the output link busy, but contention at the input-
side of the interconnect can result in bursty output traffic.

The behavior of DBL for L=900 Mb/s and S=1.2 with
500 bytes UDP payload packets is shown in Figure 7. Port
1 is the subject output. The top chart shows the number of
packets forwarded by the subject every scheduling interval.
A link rate of 900 Mb/s leads to a maximum rate of 98
packets per interval as indicated by the dashed line. As
expected, the line rate is not always attained. Indeed, for
nearly 60% of the test input-side contention results in the
forwarding rate being less than the line rate. A more com-
plete picture is given from time 55 to 65 in the bottom
charts. During this time interval, port 4 sends to the sub-
ject until time 59 when port 6 begins sending to it for only
1 ms. At time 60, port 2 takes over sending to the subject.
The bottom left chart shows these inputs' VOQ lengths for
the subject and the bottom right chart shows the associated
VOQ rates. The scheduler can not keep the subject sup-
plied with 900 Mb/s of traffic during most of this period,
primarily due to the rapid changes in traffic that occur
over only two scheduling intervals.

6.SCALING CONSIDERATIONS
It is important to understand how the resources required
for distributed scheduling change as the system size scales

- 8 -

Figure 7. Response for a bursty traffic pattern.

up. First, we address the communication overhead by con-
sidering the method used to share the required information
among the N ports. In the approach outlined in the origin-
al DBL description, which we will refer to as simple, each
port i starts by sending a message to every port j contain-
ing B(i,j). Each port j then computes the sum B(+,j) and
sends a message to every other port containing B(+,j) and
B(j). This implies that every port sends 2N cells and re-
ceives 2N cells for control purposes. In order to keep the
overhead to a small fraction of the total capacity, the
scheduling period must be substantially larger than the
time it takes to send 2N cells to the switch. For the ONL
switch, the time to send a cell is about 250 ns. To limit the
overhead for scheduling to 2% of the switch bandwidth,
then, we need a scheduling period of at least 12.5N μs.
This implies that the largest acceptable value of N is 40
with our standard 500 μs scheduling period.

The method used in the ONL routers is somewhat dif-
ferent than the simple method. Because the ONL routers
are small, each port can place all of its VOQ lengths plus
the output queue length into a single cell which is multic-
ast to the other ports. This gives each port all the informa-
tion it needs to make its scheduling decisions. Here, each
port sends one cell and receives N. This approach can be
used directly so long as N is no larger than the number of
VOQ values that can be carried in a single cell. Denote
this value by k and note that if VOQ lengths are represen-
ted using a simple floating point representation, we can
comfortably handle values of k up to 32. One can scale
this approach directly to larger systems by sending mes-
sages consisting of multiple cells and multicasting them in
the same way. In this approach, called ONL, each port
sends N/k cells and receives N/k N. Note that this im-
plies a quadratic dependence on the switch size, which
greatly limits its ability to scale. However, simply creating
separate multicast channels for each group of k consecutive
ports can reduce the number of cells received back to N.
We refer to this scheme as improved ONL.

To further improve the scalability, a grouping tech-
nique can be used to aggregate partial sums that are then
used to obtain the B(+,j) values. The ports are divided into
groups of h consecutive ports where hk ≥ N. Within each

group, each port sends its first k VOQ lengths to the first
member of the group, the next k VOQ lengths to the next
member, and so forth. Each group member can use the
VOQ values received to compute a partial sum. In the
next phase of the process, the i-th member of each group
exchanges all of the partial sums it has computed with the
i-th member of every other group. It then uses these to
compute the B(+,j) values for outputs j in the range [(i–
1)k, ik–1]. Finally, these values are sent to the other mem-
bers of its group. This method, called group, requires each

port to send and receive 2h/k h+(N/h–1) cells. Note
that it does not require the use of multicast.

Figure 8 shows how these methods compare with one
another as the switch size grows, assuming k=h=32. The
two cutoff lines correspond to points above which the com-
munication overhead for distributed scheduling exceeds
2% of the switch bandwidth. The line labeled 1G is com-
puted based on the parameters for the ONL router (250 ns
cell time and a 500 μs scheduling interval). The line
labeled 10G assumes that the cell time scales down by a
factor of 10 while the scheduling interval is held constant.
Of course, the positions of the cutoffs change as one ad-
justs the acceptable overhead and/or the scheduling inter-
val. For an ONL-like switch, no approach scales to more
than a few tens of ports without the communication over-
head exceeding 2% of the switch capacity. However, the
group method allows 10G switches to scale up to thou-
sands of ports while keeping the overhead below 2%.
Even for the 1G case, the group method does scale up to
1,000 ports if a communication overhead of 5% is accept-
able.

The other aspect of distributed scheduling that affects
scalability is the computational overhead. We annotated
the scheduler with timing code in order to understand the
actual computational needs of our implementation of DBL.
Results were gathered over 100,000 iterations of the sched-
uler and the maximum run times recorded. There are
three basic components to the scheduler: reading queue
lengths from the FPX, sending and receiving queue
lengths cells, and computing the new VOQ rates. Reading
queue lengths from the FPX took just under 15,000 cycles
(30 μs on the SPC). For the majority of those cycles, the
SPC is merely waiting on the response from the FPX. The
current interface only allows for synchronous communica-
tion with the FPX, but if an asynchronous model existed
then the SPC could potentially be doing other work while
it waited on the response. The actual act of sending and
receiving the queue length cells takes less than 2,500
cycles (5 μs). Computing the VOQ rates takes the most
computational resources, needing just over 20,000 cycles
(40 μs). This is largely dominated by the computation of
the B(+,j) values for each port.

The group method outlined earlier is preferable from a
computational standpoint. Both variants of the method
used in the ONL routers require that each port processor
perform (N–1)N additions to compute the B(+,j) values.

- 9 -

Figure 8. Overhead of various communication methods.

The group method requires only (h–1)k+(N/h–1)k addi-
tions. As an example, for N=1024 and k=h=32 this is
1,984 additions versus over 1 million for the ONL method.
Of course, in the ONL routers N is small enough that the
inefficient procedure for computing the sums is not a sig-
nificant concern, but clearly it can become a limiting
factor as N increases. The 500 MHz processor used in the
ONL router can perform 2,000 additions in under 35 μs, so
the computational effort required to calculate the sums in
the group method is not a serious constraint.

The method for ordering the outputs will also become
more important as N scales up. Once again, the computa-
tional effort to do this on an ONL router with only 8 ports
is minimal. Any simple sorting routine will work quickly
enough, but moving to larger routers would necessitate a
more sophisticated algorithm. Certainly, the fact that the
output order is relatively stable over time could be lever-
aged to achieve better performance.

7.CLOSING REMARKS
Current high-end routers are being built with buffered,
multistage interconnection networks. While these inter-
connects offer one of the most scalable and cost-effective
solutions for such routers, it is known that their perform-
ance degrades significantly under certain traffic conditions
that do occur in the Internet. Moreover, the interconnect
speedup is often much smaller than 2, which means that
the analytical performance guarantees of most general
schedulers do not apply. Distributed, coarse-grained
schedulers have the potential to fill the gap. Until now, all
serious evaluation of this class of schedulers has been lim-
ited to either simulation or analysis that requires a speedup
of 2. We have presented a real implementation and evalu-
ation under much more realistic conditions. In particular,
we have studied the performance of one particular sched-
uler under both extreme and dynamic traffic patterns at
Gb/s rates when the speedup is considerably lower than
that required by the analytical results. We have also given
some insight into the actual scalability of distributed,
coarse-grained schedulers based on our experience imple-
menting one in a real router.

We have also developed a measurement infrastructure
that is capable of producing meaningful results at a 100 μs
granularity. This infrastructure has allowed us to evaluate
the fine-grained responsiveness of our scheduler in a way
previously impossible on real running systems. Coordin-
ated measurement agents running on each port of the
router examine queue lengths, VOQ rates, and packet in-
put and output rates so that the fine-grained behavior of
the scheduler can be observed. Packet generation mechan-
isms comprise the rest of the measurement infrastructure.
We have developed a flexible packet generator that runs on
a network processor contained on a PCI card that is able to
produce up to three Gb/s of any size packets. Additionally,
it is possible to synchronize multiple packet generators
such that the generators start sending packets within 15 μs
of each other. This infrastructure was invaluable in both

the debugging and evaluation phases of our study, and we
believe that it can be extremely useful for many kinds of
network evaluation involving fine-grained dynamics.

We worked with the Open Network Laboratory experi-
mental testbed for all our evaluation in this paper. While
much of our work was able to proceed within the normal
ONL environment, implementing the scheduler in the core
of the ONL router did require some extra privileges and at-
tention from the ONL staff. We are also currently working
with the ONL staff to add our packet generators to the
standard ONL hardware suite.

References
[1] Anderson, T., S. Owicki., J. Saxe and C. Thacker. “High

Speed Switch Scheduling for Local Area Networks,” ACM
Trans. on Computer Systems, 11/93.

[2] Chuang, S.-T., A. Goel, N. McKeown, and B. Prabhakar
“Matching Output Queueing with a Combined Input Output
Queued Switch,” IEEE Journal on Selected Areas in
Communications, 12/99.

[3] Chuang, S.-T., S. Iyer, and N. McKeown. “Practical
Algorithms for Performance Guarantees in Buffered
Crossbars,” Proceedings of IEEE INFOCOM, 3/05.

[4] Cisco Carrier Routing System.
 http://www.cisco.com/en/US/products/ps5763/index.html.

[5] Intel IXP 2xxx Product Line of Network Processors.
http://www.intel.com/design/network/products/npfamily/ixp
2xxx.htm.

[6] Krishna, P., N. Patel, A. Charny and R. Simcoe. “On the
Speedup Required for Work-conserving Crossbar Switches,”
IEEE J. Selected Areas of Communications, 6/99.

[7] Kuhns, F., J. Dehart, A. Kantawala, R. Keller, J. Lockwood,
P. Pappu, W. D. Richard, D. Taylor, J. Parwatikar, E.
Spitznagel, J. Turner, and K. Wong. “Design and
Evaluation of a High-Performance Dynamically Extensible
Router,” Proceedings of the DARPA Active Networks
Conference and Exposition, 5/02.

[8] McKeown, N. “iSLIP: A Scheduling Algorithm for Input-
queued Switches,” IEEE Transactions on Networking, 4/99.

[9] Open Network Laboratory. http://www.onl.wustl.edu.
[10] Pappu, P., J. Parwatikar, J. Turner and K. Wong.

“Distributed Queueing in Scalable High Performance
Routers,” Proceedings of IEEE INFOCOM, 4/03.

[11] Pappu, P., J. Turner and K. Wong. “Work-Conserving
Distributed Schedulers for Terabit Routers,” Proceedings of
SIGCOMM, 9/04.

[12] Radisys Products. http://www.radisys.com/products/Other-
Products.cfm.

[13] Rodeheffer, T. L., and J. B. Saxe. “An Efficient Matching
Algorithm for a High-Throughput, Low-Latency Data
Switch,” Compaq Systems Research Center, Research
Report 162, 11/5/98.

- 10 -

http://www.cisco.com/en/US/products/ps5763/index.html

	ABSTRACT
	1.INTRODUCTION
	2.Background
	3.Experimental Setup
	4.Extreme Traffic Evaluation
	5.Dynamic Traffic Evaluation
	6.Scaling Considerations
	7.Closing Remarks

	DepartmentName: Department of Computer Science & Engineering
	ReportNumber: 2007-51
	Date: October 19, 2007
	Email: Corresponding Author: wiseman@wustl.edu
	Notes:
	Footer1: Department of Computer Science & Engineering - Washington University in St. Louis
	Footer2: Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160
	Abstract: Abstract: Modern high performance routers rely on sophisticated interconnection networks to meet ever increasing demands on capacity. Regulating the flow of packets through these interconnects is critical to providing good performance, particularly in the presence of extreme traffic patterns that result in sustained overload at output ports. Previous studies have used a combination of analysis and idealized simulations to show that coarse-grained scheduling of traffic flows can be effective in preventing congestion, while ensuring high utilization. In this paper, we study the performance of a coarse-grained scheduler in a real router with a scalable architecture similar to those found in high performance commercial systems. Our results are obtained by taking fine-grained measurements of an operating router that provide a detailed picture of how the scheduling algorithm behaves under a variety of conditions, giving a more complete and realistic understanding of the short time-scale dynamics than previous studies could provide. We also examine computation and communication overheads of our scheduler implementation to assess its resource usage and to provide the basis for an analysis of how the resource usage scales with system size.
	Title: Experimental Evalutation of a Coarse-Grained Switch Scheduler
	Author: Authors: Charlie Wiseman, Jon Turner, Ken Wong, Brandon Heller

