
A Remotely Accessible Network Processor-Based Router
for Network Experimentation

Charlie Wiseman, Jonathan Turner, Michela Becchi, Patrick Crowley, John DeHart,
Mart Haitjema, Shakir James, Fred Kuhns, Jing Lu, Jyoti Parwatikar, Ritun Patney,

Michael Wilson, Ken Wong, David Zar
Department of Computer Science and Engineering

Washington University in St. Louis
{cgw1,jst,mbecchi,crowley,jdd,mah5,scj1,fredk,jl1,jp,ritun,mlw2,kenw,dzar}@arl.wustl.edu

ABSTRACT
Over the last decade, programmable Network Processors
(NPs) have become widely used in Internet routers and other
network components. NPs enable rapid development of com-
plex packet processing functions as well as rapid response to
changing requirements. In the network research community,
the use of NPs has been limited by the challenges associ-
ated with learning to program these devices and with using
them for substantial research projects. This paper reports
on an extension to the Open Network Laboratory testbed
that seeks to reduce these “barriers to entry” by providing
a complete and highly configurable NP-based router that
users can access remotely and use for network experiments.
The base router includes support for IP route lookup and
general packet filtering, as well as a flexible queueing sub-
system and extensive support for performance monitoring.
In addition, it provides a plugin environment that can be
used to extend the router’s functionality, enabling users to
carry out significant network experiments with a relatively
modest investment of time and effort. This paper describes
our NP router and explains how it can be used. We provide
several examples of network experiments that have been im-
plemented using the plugin environment, and provide some
baseline performance data to characterize the overall system
performance. We also report that these routers have already
been used for ten non-trivial projects in an advanced ar-
chitecture course where most of the students had no prior
experience using NPs.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—network communications

General Terms
Design, Experimentation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ANCS’08, November 6–7, 2008, San Jose, CA, USA.
Copyright 2008 ACM 978-1-60558-346-4/08/0011 ...$5.00.

Keywords
Programmable routers, network testbeds, network proces-
sors

1. INTRODUCTION
Multi-core Network Processors (NPs) have emerged as a

core technology for modern network components. This has
been driven primarily by the industry’s need for more flexi-
ble implementation technologies that are capable of support-
ing complex packet processing functions such as packet clas-
sification, deep packet inspection, virtual networking and
traffic engineering. Equally important is the need for sys-
tems that can be extended during their deployment cycle to
meet new service requirements. NPs are also becoming an
important tool for networking researchers interested in cre-
ating innovative network architectures and services. They
also make it possible for researchers to create experimen-
tal systems that can be evaluated with Internet-scale traf-
fic volumes. It is likely that NP-based processing elements
will play a significant role in NSF’s planned GENI initiative
[6][15], providing researchers with expanded opportunities
to make use of NPs in their experimental networks.

Unfortunately, NPs pose significant challenges to research
users. While network equipment vendors can afford to in-
vest significant time and effort into developing NP software,
it is more difficult for academic researchers to develop and
maintain the necessary expertise. There are several rea-
sons that using NPs is challenging. First, it can be diffi-
cult to obtain NP-based products, since manufacturers of
those products sell primarily to equipment vendors and not
to end users. Second, developing software for NPs is chal-
lenging because it requires programming for parallel execu-
tion, something most networking researchers have limited
experience with, and because it requires taking advantage
of hardware features that are unfamiliar and somewhat id-
iosyncratic. Third, there is no established base of existing
software on which to build, forcing researchers to largely
start from scratch.

To address these challenges we have designed, implem-
ented, and deployed a gigabit programmable router based on
Intel’s IXP 2800 network processor that is easy to use and
can be easily extended through the addition of software plu-
gins. Our Network Processor-based Router (NPR) takes care
of standard router tasks such as route lookup, packet clas-
sification, queue management and traffic monitoring which
enables users to focus on new network architectures and ser-

20

Figure 1: Basic block diagram representation of the
IXP 2800 [16].

vices without the need to develop an entire router from the
ground up. In addition, we provide a plugin environment
with significant processing and memory resources, and an
API that implements common functions needed by most
users. This makes it possible for users to develop plugins
for non-trivial network experiments without having to write
a lot of new code. Fourteen of these routers are currently
deployed in the Open Network Laboratory (ONL) testbed
[5]. The ONL is an Internet-accessible testbed which makes
it possible for anyone to use these resources without hav-
ing to acquire and manage the systems themselves. All of
the source code for the plugin API and example plugins, as
well as source code for most of the main router pipeline1 is
available through the ONL website [14].

The rest of the paper is organized as follows. Section 2
gives a detailed description of the NPR, including how it
fits into our larger network testbed. Section 3 discusses the
programmable components in the router. Section 4 includes
some examples of plugins that have already been developed
for our routers. Section 5 provides a brief performance eval-
uation of the NPR. Section 6 contains related work, and
Section 7 concludes the paper with a few closing remarks
about our overall experience with the system.

2. NPR OVERVIEW
To understand the design of the NPR, it is important to

know a few things about the architecture of the Intel IXP
2800 [8]. The IXP 2800, like most network processors, is
designed specifically for rapid development of high perfor-
mance networking applications. As such it has some unusual
architectural features relative to general purpose processors
which heavily influences how it is used.

Figure 1 is a block diagram showing the major compo-
nents of the IXP. To enable high performance, while still
providing application flexibility, there are 16 multi-threaded
MicroEngine (ME) cores which are responsible for the ma-
jority of the packet processing in the system. Each ME has
eight hardware thread contexts (i.e., eight distinct sets of
registers). Only a single thread is active at any given time on
one ME, but context switching takes a mere 2-3 clock cycles
(about 1.5-2 ns). These threads are the mechanism by which

1There is a very small amount of proprietary code from our
NP vendor.

IXP applications deal with the memory latency gap. Indeed,
there are no caches in the IXP because caches are not par-
ticularly effective for networking applications that exhibit
poor locality-of-reference. There is no thread preemption,
so a cooperative programming model must be used. Typi-
cally, threads pass control from one to the next in a simple
round-robin fashion. This is accomplished using hardware
signals, with threads commonly yielding control of the pro-
cessor whenever they need to access memory that is not local
to the ME. This round-robin style of packet processing also
provides a simple way to ensure that packets are forwarded
in the same order they are received. Finally, each ME has a
small hardware FIFO connecting it to one other ME, which
enables a fast pipelined application structure. These FIFOs
are known as next neighbor rings.

The IXP 2800 also comes equipped with 3 DRAM chan-
nels and 4 SRAM channels. There is an additional small
segment of data memory local to each ME along with a ded-
icated program store with a capacity of 8K instructions. A
small, shared on-chip scratchpad memory is also available.
Generally, DRAM is used only for packet buffers. SRAM
contains packet meta-data, ring buffers for inter-block com-
munication, and large system tables. In our systems, one of
the SRAM channels also supports a TCAM which we use for
IP route lookup and packet classification. The scratchpad
memory is used for smaller ring buffers and tables.

Finally, there is an (ARM-based) XScale Management
Processor, labeled MP in Figure 1, that is used for overall
system control and any tasks which are not handled by the
rest of the data path. The XScale can run a general-purpose
operating system like Linux or a real-time operating system
like VxWorks. Libraries exist which provide applications
on the XScale direct access to the entire system, including
all memory and the MEs. With this background, we now
proceed to a detailed description of the NPR.

2.1 Data Plane
The software organization and data flow for the NPR are

shown in Figure 2. Note the allocation of MEs to different
software components. The main data flow proceeds in a
pipelined fashion starting with the Receive block (Rx) and
ending with the Transmit block (Tx). Packets received from
the external links are transferred into DRAM packet buffers
by Rx. Rx allocates a new buffer for each incoming packet
and passes a pointer to that packet to the next block in the
pipeline, along with some packet meta-data. In order to best
overlap computation with high latency DRAM operations,
Rx processing is broken up into two stages with each stage
placed on a separate ME. Packets flow from the first stage
to the second over the next neighbor ring between the MEs.

Note that, in general, the information passed between
blocks in the diagram consists of packet references and se-
lected pieces of header information, not packet data. Thus,
packets are not copied as they move (logically) from block
to block. Each block can access the packet in DRAM using
its buffer pointer, but since DRAM accesses are relatively
expensive, the system attempts to minimize such accesses.
Also note that most blocks operate with all eight threads
running in the standard round-robin fashion.

The Multiplexer block (Mux) serves two purposes. Each
packet buffer in DRAM has an associated 32B entry in
SRAM which stores some commonly needed information
about the packet, such as the packet length. Mux initial-

21

Figure 2: Data plane of the NPR.

izes this meta-data for packets coming from Rx. Its second
function is to multiplex packets coming from blocks other
than Rx back into the main pipeline. This includes packets
coming from the XScale and packets coming from plugins.
A simple user-configurable priority is used to determine how
to process packets from the different sources.

The Parse, Lookup, and Copy block (PLC) is the heart
of the router. Here, packet headers are inspected to form a
lookup key which is used to find matching routes or filters
in the TCAM. Routes and filters are added by the user, and
will be discussed further in Section 3.2. Based on the result
of the TCAM lookup, PLC takes one of five actions. First,
the packet can be sent out towards the external links via
the Queue Manager block (QM). Second, the packet can be
sent to the XScale if it has some special processing needs
not handled by the ME pipeline. Third, the packet can be
sent to a plugin ME (hosting user code). Plugins will be
discussed fully in Section 3.1, but, as can be seen in Fig-
ure 2, plugins will be able to forward packets to many other
blocks including the QM, Mux, and other plugins. Fourth,
the packet can be dropped. Finally, multiple references to
the same packet can be generated and sent to distinct desti-
nations. For example, one reference may be sent to a plugin
and another directly to the QM. In fact, this mechanism al-
lows the base router to support IP multicast (among other
things). Reference counts are kept with the packet meta-
data in SRAM to ensure that the packet resources are not
reclaimed prematurely. Note that this does not allow differ-
ent “copies” to have different packet data because there is
never more than one actual copy of the packet in the system.

Before moving on, it is worth discussing the design choices
made for PLC. Three MEs all run the entire PLC code block
with all 24 threads operating in a round-robin fashion. One
alternative would be to break up the processing such that
Parse is implemented on one ME, Lookup on a second, and
Copy on a third. Our experience shows that the integrated
approach chosen here yields higher performance. This is pri-
marily due to the nature of the operations in PLC. To form
the lookup key, Parse alternates between computation and
high latency DRAM reads of packet headers, and Lookup
spends most of its time waiting on TCAM responses. On the
other hand, Copy is computation-bound due to the poten-
tially complex route and filter results which must be inter-
preted. Combining all three blocks together provides enough

computation for each thread to adequately cover the many
memory operations.

Continuing down the main router pipeline, the QM places
incoming packets into one of 8K per-interface queues. A
weighted deficit round robin scheduler (WDRR) is used to
pull packets back out of these queues to send down the
pipeline. In fact, there is one scheduler for each external
interface, servicing all the queues associated with that in-
terface. Each queue has a configurable WDRR quantum
and a configurable discard threshold. When the number
of bytes in the queue exceeds the discard threshold, newly
arriving packets for that queue are dropped. The QM has
been carefully designed to get the best possible performance
using a single ME. The design uses six threads. One handles
all enqueue operations, and each of the remaining five im-
plements the dequeue operations for one outgoing interface.
This decouples the two basic tasks and enables the QM to
achieve high throughput.

Following the QM is the Header Format block (HF) which
prepares the outgoing Ethernet header information for each
packet. It is responsible for ensuring that multiple copies
of a packet (that have potentially different Ethernet ad-
dresses) are handled correctly. Finally, the Transmit block
(Tx) transfers each packet from the DRAM buffer, sends it
to the proper external link, and deallocates the buffer.

There are two additional blocks which are used by all
the other blocks in the router. First is the Freelist Man-
ager block (FM). Whenever a packet anywhere in the sys-
tem is dropped, or when Tx has transmitted a packet, the
packet reference is sent to the FM. The FM then reclaims
the resources associated with that packet (the DRAM buffer
and the SRAM meta-data) and makes them available for re-
allocation. The Statistics block (Stats) keeps track of various
counters through-out the system. There are a total of 64K
counters that can be updated as packets progress through
the router. Other blocks in the system issue counter up-
dates by writing a single word of data to the Stats ring
buffer, which includes the counter to be updated and incre-
ment to be added. For example, there are per-port receive
and transmit counters which are updated whenever packets
are successfully received or transmitted, respectively. There
are also counters for each route or filter entry that are up-
dated both before and after matching packets are queued
in the QM. This provides a fine-grained view of packet flow

22

Figure 3: Control plane of the NPR.

in the router. The counters all ultimately reside in SRAM,
but there are 192 counters which are also cached locally in
the Stats ME. One thread periodically updates the SRAM
counterparts to these counters while the other threads all
process update requests from the ring buffer.

The final block in the diagram is the XScale. The primary
purpose of the XScale is to control the operation of the data
plane, as discussed in detail in the next section. However,
the XScale also plays a small role in the data plane. Specifi-
cally, it handles any IP control packets and other exceptional
packets. This includes all ICMP and ARP handling as de-
fined by the standard router RFCs. All messages generated
by the XScale are sent back through Mux to PLC, allowing
users to add filters to redirect these packets to plugins for
special processing, should they desire to do so.

2.2 Control Plane
The XScale’s main function is to control the entire router

and act as the intermediary between the user and the data
plane. This is accomplished by a user-space control daemon
running under Linux on the XScale. Libraries provided by
Intel are used to manage the MEs and the memory in the
router, and a library provided by the TCAM vendor contains
an API for interacting with the TCAM. Figure 3 summarizes
the most important roles of the XScale daemon. Messages
come from the user to request certain changes to the system
configuration. Typically the first such request is to start
the router which involves loading all the base router code
(i.e., everything except plugins) onto the MEs and enabling
the threads to run. Once the data path has been loaded
successfully, there are several types of control operations
that can be invoked.

The first of these involves configuration of routes and fil-
ters, which are discussed in detail in Section 3.2. The XS-
cale also supports run-time configuration of some data plane
blocks, by writing to pre-defined control segments in SRAM.
For example, queue thresholds and quanta used by the QM
can be dynamically modified by the user in this way.

The XScale also provides mechanisms to monitor the state
of the router. All of the counters in the system are kept in
SRAM, which allows the XScale to simply read the memory
where a certain counter is stored to obtain the current value.
These values can be sampled periodically in order to drive
real-time displays of packet rates, queue lengths, drop coun-
ters, etc. The system can support dozens of these ongoing
requests concurrently.

All plugin operations are also handled by the XScale. In

particular, this involves adding and removing user-developed
plugin code on the plugin MEs and passing control mes-
sages from the user to the plugins after they are loaded.
The control messages are forwarded by the XScale through
per-plugin rings, and replies are returned in a similar way.
The XScale is oblivious to the content of these control mes-
sages, allowing users to define whatever format and content
is most appropriate for their applications. Plugins can also
effect changes to the router by sending requests through
these rings to the XScale. Once a plugin is loaded, users
can add filters to direct specific packet flows to the plugin.

2.3 Testbed
The NPR has been deployed in the ONL testbed. Re-

searchers can apply for accounts to gain Internet access to
the testbed so that they can use the testbed resources to
run their experiments (at no cost, of course). The general
layout of the testbed is shown in Figure 4.

The testbed itself consists of standard Linux PCs along
with the NPRs. All of the data interfaces on these com-
ponents are connected directly to a gigabit configuration
switch, and thus indirectly to all other components. The
hosts all have separate control interfaces, and the XScales
serve as the control interface for the NPRs as they have their
own network interface which is separate from the data in-
terfaces. Everything is managed by our testbed controller
which runs on another Linux PC. Users configure network
topologies with the Remote Laboratory Interface (RLI) on
their local computer. The RLI also provides an intuitive
way to control and monitor the individual routers and hosts
in the topology. An example session is shown in the lower
left of the figure.

Once connected to the testbed controller the RLI sends
the topology to the controller so that hardware resources
can be allocated to the user, and the chosen components
can be connected together with VLANs in the configuration
switch. Hardware resources are reserved ahead of time either
through the RLI or on the ONL website so that when a
user is ready to run their experiment enough resources are
guaranteed to be available. All assigned resources are given
entirely to the user so that there can be no interference from
other concurrent experiments. Users are also granted SSH
access to hosts in their topology so that they can log in to
start any traffic sources and sinks.

The ONL currently has 14 NPRs and over 100 hosts as
well as some additional routers and other networking com-
ponents. The routers themselves are built on ATCA tech-

23

Figure 4: A high-level view of our Internet-accessible testbed.

nology, which is an industry standard for networking com-
ponents that has broad industry support. ATCA technol-
ogy is also proving to be a boon to networking research, as
it enables the assembly of powerful, yet highly flexible ex-
perimental networking platforms. In particular, the NPR
is built on Radisys ATCA-7010 boards [11], shown in the
bottom right of Figure 4. Each board has two IXP 2800s,
a shared TCAM, and ten 1 gigabit data interfaces. In our
context, we use the two IXPs as separate five port routers,
assigning five of the data interfaces to each IXP.

3. PROGRAMMABILITY
Now that the basics of the NPR have been covered, we

turn our attention to the progammable components of the
router. There are two primary facets of the overall pro-
grammability of the NPR: plugins and filters. Together they
provide users a rich selection of options with which to cus-
tomize processing and packet flow in the NPR.

3.1 Plugin Framework
Recall from Figure 2 that five MEs are used to host plu-

gins. NPR users are free to load any combination of code
blocks onto these MEs. In addition to the five MEs there
are five ring buffers leading from PLC to the plugins which
can be used in any combination with the MEs. For example,
each plugin may pull packets from a separate ring (this is
the default behavior) or any subset of plugins may pull from
the same ring. The ring buffers, then, are simply a level of
indirection that adds versatility to potential plugin archi-
tectures. The NPR also sets aside 4KB of the scratchpad
memory and 5MB of SRAM exclusively for plugin use.

The actual processing done by any particular plugin is en-
tirely up to the plugin developer. Plugins are written in Mi-
croEngine C which is the standard C-like language provided

by Intel for use on MEs. The most important differences be-
tween MicroEngine C and ANSI C are dictated by the IXP
architecture. First, there is no dynamic memory allocation
or use because there is no OS or other entity to manage the
memory. Second, all program variables and tables must be
explicitly declared to reside in a particular type of memory
(registers, ME local memory, scratchpad, SRAM, DRAM)
as there is no caching. Finally, there is no stack and hence
no recursion. Also recall from the IXP review that the eight
hardware contexts share control explicitly (no preemption).

To help users who are unfamiliar with this programming
environment we have developed a framework that lowers the
entry barrier for writing simple to moderately complex plu-
gins. Our framework consists of a basic plugin structure
that handles tasks common to most plugins and a plugin
API that provides many functions that are useful for packet
processing.

In the basic plugin structure there are three different types
of tasks to which the eight threads are statically assigned at
plugin compile time. The first of these tasks deals with
packet handling. The framework takes care of pulling pack-
ets from the incoming ring buffer and then calls a user sup-
plied function to do the actual plugin processing. When
the function returns, the packet is pushed into the outgoing
ring. As can be seen in Figure 2, the packet can be sent
back to MUX which results in the packet being matched
against routes and filters in the TCAM a second time. This
is useful if something in the packet, such as the destination
IP address, has changed and the packet might need to be
re-routed. Alternatively, the plugin can send the packet di-
rectly to the QM so that it will be sent out to the external
links. Packets can also be redirected to the next plugin ME
via the next neighbor rings. In fact, although it is not shown
in the figure to avoid confusion, plugins even have the ability

24

Figure 5: Adding a filter in the RLI.

to send packets to any other plugin ME by writing directly
to the five ring buffers leading from PLC to the plugins.

The second type of task is the periodic task. Some plu-
gins may need to do processing that is not dictated purely
by packet arrivals. In such cases, plugin developers can as-
sign threads to the periodic task which has the thread sleep
for a configurable time and then call another user provided
function to do the periodic processing. The last type of
task is the control task, first mentioned in Section 2.2. This
provides a mechanism for plugins to receive and respond to
control messages from the RLI. As an example, we have a
plugin which delays packets by N ms, where N can be set via
a control message. These messages and their responses go
through per-plugin control ring buffers as shown in Figure 3.
These rings are also used for plugins to request modifications
to the system outside of the plugin MEs. Such requests are
processed by the XScale and allow plugins to modify queue
parameters, add or remove routes and filters, and even add
or remove plugin code from other plugin MEs.

To support plugin developers, we provide a plugin API.
The API consists of helper functions for common packet pro-
cessing steps as well as functions that hide some of the com-
plexity of interacting with packets and packet meta-data.

3.2 Filters
In order to actually get packets to plugins, filters are in-

stalled to direct packet flows to specific destinations in the
router. More generally, filters are used to modify default
behavior of the router by superseding standard IP routing.
As mentioned in Section 2.1, filters and routes are stored in
the TCAM. Routes are simpler and used only for standard
IP routing. That is, the packet’s destination IP address
is compared to the route database and the longest match-
ing address prefix is returned. The result also contains the
external interface that the packet should be forwarded on.
Each NPR supports 16K routes.

Filters are more general than routes and include more
fields in the lookup key and more options for the action to
be taken. Figure 5 shows a screenshot of the dialog box
provided by the RLI for adding filters. In general, the fields

api_pkt_ref_t packetRef; // packet reference
api_meta_data_t metaData; // local copy of meta-data
unsigned int ipHdrPtr; // pointer to IP header (DRAM)
api_ip_hdr_t ipHdr; // local copy of IP header

api_get_pkt_ref(&packetRef);
api_read_meta_data(packetRef, &metaData);

ipHdrPtr = api_get_ip_hdr_ptr(packetRef,
metaData.offset);

api_read_ip_hdr(ipHdrPtr, &ipHdr);

switch(ipHdr.ip_proto)
{

case PROTO_ICMP: api_increment_counter(0); break;
case PROTO_TCP : api_increment_counter(1); break;
case PROTO_UDP : api_increment_counter(2); break;
default : api_increment_counter(3); break;

}

Figure 6: Code for the Network Statistics Plugin.

in the top half of the window constitute the lookup key and
those in the bottom half describe what should happen to
any matching packets. Each key field can be specified as a
particular value or as “*” which means that any value for
that field should match. In addition, IP address values can
include ranges of addresses in the CIDR notation. An ex-
panded version of the standard IP 5-tuple forms the core of
the lookup key, including source and destination IP address
ranges, source and destination transport protocol ports, and
the IP protocol. For TCP packets, the TCP state flags are
also part of the key allowing filters to match particular parts
of TCP flows. The plugin tag is a 5 bit field that plugins can
modify to force different matches to occur on any subsequent
passes the packet takes through PLC. Finally, there are four
exception bits which allow exceptional traffic, such as pack-
ets with a Time-to-Live of 0, to be matched and potentially
handled in some way other than the default. In this partic-
ular example, the beginning of any HTTP flow from hosts
in the 192.168.0.0/16 subnet going to 192.168.1.64 will be
matched. Note that the TCP flags indicate only TCP SYN
packets (and not SYN-ACKs) will match.

The rest of the fields determine exactly what happens to
packets that match the filter. The most important fields are
port/plugin selection, output port, and output plugin because
they determine whether or not the matching packets will go
directly to the QM or to a plugin. In the figure, the filter is
configured to send the packets to plugin 2. The output port
is part of the data that is passed to the plugin as well, so
that the plugin knows where to send the packet next (if it
decides to forward the packet). Note that the output plugin
actually refers to the ring buffer leading by default to that
plugin ME, but any plugin is capable of reading from any of
the five rings, so plugin developers are free to configure plu-
gins to process packets from the ring buffers in other ways
as well. The multicast field can be set if multiple copies of
the packet are desired. In that case, any combination of
ports and plugins can be set in the output port and out-
put plugin fields, and copies will be sent by PLC to each of
the specified destinations. The qid determines which of the
8K per-interface queues the packet enters when it reaches
the QM. In the event of multiple copies, each copy will go
into the same numbered queue for whichever interface it is

25

Figure 7: Example topology for a distributed game application.

destined. Users can also specify that all matching packets
should be dropped by selecting the drop field.

There are actually two different filter types in the NPR,
differentiated by the selection of the aux field. If the field is
not set we call the filter a primary filter, and if it is, an aux-
iliary filter. The lookup key fields and actions all have the
same meaning for either type, but auxiliary filters cause an
additional reference to the matching packet to be created by
PLC and sent to the destination contained in the auxiliary
filter. This means that auxiliary filters represent a separate
set of potential matches. On the other hand, primary filters
are logically in the same set of potential matches as routes.
This is where the priority field in the filter comes into play.
All routes are assigned the same priority while each filter
has its own priority. When a packet matches multiple pri-
mary filters, the highest priority filter is considered to be
the matching one, unless the route priority is higher. In
that case, the matching route is used to determine how the
packet is forwarded. For auxiliary filters, the highest pri-
ority auxiliary filter is considered to be a match. Although
matching packets against filters with priorities can poten-
tially be fairly complex, the TCAM allows us to lay out all
routes and filters in such a way that higher priority entries
(and longer prefixes for routes) come first in the TCAM ta-
bles and are thus the first match returned when the TCAM
is queried. The end result is that a single packet can match
one primary filter or route, and one auxiliary filter. This
can be quite useful if the user wishes to have passive plugins
that monitor certain packet streams without disturbing the
normal packet flow. Each NPR supports 32K primary filters
and 16K auxiliary filters.

4. EXAMPLE PLUGINS
To provide a more concrete view of the capabilities of the

NPR plugin environment, we now describe three example
plugins that have been written and tested in the router.

4.1 Network Statistics
The first example is a simple plugin which keeps a count of

how many packets have arrived with different IP protocols.
The code written by the developer is shown in Figure 6 and
consists mostly of API calls to read the IPv4 header from
the packet in DRAM. First, the packet reference is filled

in from the input ring data by calling api_get_pkt_ref().
The packet itself resides in a 2KB DRAM buffer with the
beginning of the packet header at some offset into that buffer
(to accommodate packets that may increase in size). The
offset is part of the meta-data for that packet, so the second
step is to read the meta-data using api_read_meta_data().
Once we have the offset, api_get_ip_hdr_ptr() is called to
calculate the address of the IP header. api_read_ip_hdr()

reads the header into a local struct which grants easy access
to the header fields. Finally, based on the IP protocol one
of four different plugin-specific counters is incremented with
api_increment_counter(). These counters can be moni-
tored easily in the RLI so that the user can see, in real time,
how many packets of each type are passing through the plu-
gin. The plugin does not explicitly decide where packets
should go next and so by default all packets will be sent to
the QM after leaving the plugin. This plugin has no need
for periodic tasks or for control messages from the RLI so all
eight threads are devoted to handling packets as they arrive.

4.2 Network Support for Distributed Games
Our next example is a system that provides network ser-

vices in support of highly interactive distributed games. The
network provides support for a distributed collection of game
servers that must share state information describing the cur-
rent status of various objects in the game world (e.g., user
avatars, missiles, health packs, etc). State update packets
are distributed using a form of overlay multicast. These up-
dates are labeled with the game world region where the as-
sociated object is located and each region is associated with
a separate multicast data stream. Servers can subscribe to
different regions that are of interest to them, allowing them
to control which state updates they receive.

Figure 7 shows an example ONL session for the distributed
game application. This configuration uses 12 routers and 36
end systems acting as game servers, each supporting up to 10
players. The routers in this system host two distinct plugins
that implement the region-based multicast. While it would
have been possible to implement this application using the
built-in IP multicast support, the use of application-level
multicast frees the system from constraints on the availabil-
ity of IP addresses, and enables a very lightweight protocol
for updating subscriptions, making the system very respon-
sive to player activity.

26

Figure 8: Design of the Regular Expression Matching Engine.

The first of our two plugins is a Multicast Forwarder that
forwards the state update packets sent by the game servers,
and the second is a Subscription Processor. The subscrip-
tion state for each region in the game world is a bit vector
specifying the subset of the five outgoing links that packets
with a given region label should be forwarded to. These
bit vectors are stored as a one-dimensional array in SRAM,
which is shared by the two plugins. One megabyte of SRAM
has been allocated to these multicast bit vectors, allowing
up to one million regions in the game world.

The subscription processor runs on one ME and handles
subscription messages from all router interfaces. A TCAM
filter is configured for each of the router’s input ports, direct-
ing all subscription packets to the subscription processor’s
input ring. Each of these messages contains one or more
records with each record containing a join or a leave request
for one region. The subscription processor reads each of
these records from the packet in DRAM and updates the
corresponding state in the subscription bit vector. All eight
threads are used to process subscription packets.

Four of the MEs are used to host multicast forwarders.
These MEs share a single input ring and process differ-
ent packets in parallel. Altogether, 32 distinct packets can
be processed concurrently (using the eight hardware thread
contexts in each ME). A TCAM filter is configured for every
port, to direct all state update traffic to the shared input
ring. To process a packet, the multicast forwarder reads
the packet header to determine which multicast stream the
packet belongs to and then reads the subscription bit vector
for that region to determine which ports the packet should
be forwarded to. It then replicates the packet reference in-
formation as needed, and forwards these packet references
to the appropriate queues in the QM. Note that the packets
themselves are never copied.

4.3 Regular Expression Matching
The last and most complex example is a set of plugins

that are used for high speed regular expression matching of
packet data using Deterministic Finite Automata (DFAs).
These could be used for any application based on deep packet
inspection, such as network intrusion detection and content-
based routing. The basic operation involves following state
transitions in a DFA for every input character received,
where one DFA encompasses many regular expressions. This
topic has been studied extensively and we take advantage of
many state of the art techniques in our plugins.

Regular expression matching is a memory intensive appli-
cation both in terms of memory and bandwidth. To reduce

the space requirements we utilize both default transition
compression and alphabet reduction as in [1]. This allows
us to fit more regular expressions into the memory available
to plugins. Another technique involves pattern partitioning
of the set of regular expressions to form multiple DFAs [17].
This can reduce the overall space needs, but increases the
memory bandwidth since all of the DFAs have to be tra-
versed for each input character. Fortunately, the hardware
threads available on the plugin MEs provide the necessary
parallelism to support this requirement.

As in the previous example, there are two types of plug-
ins. The Packet Loader prepares packets for the Matching
Engines which actually run the DFAs. An auxiliary filter
directs a copy of every packet to the Packet Loader. This
ensures that even if our plugins fall behind in packet process-
ing and potentially drop packets the actual packet stream
will remain unaffected. The Packet Loader reads the packet
header and passes the packet payload to the first Matching
Engine through the next neighbor ring between them.

Up to four Matching Engines can be added to run on the
remaining MEs depending on how many threads are needed.
Figure 8 shows the design of the Matching Engine. As dis-
cussed above, the regular expressions are partitioned to pro-
duce a set of DFAs and each DFA is then run exclusively
by one thread on one ME. One thread on each Matching
Engine is used for synchronization, so up to seven threads
can be processing DFAs. There is a one-to-one mapping of
matching threads and DFAs, meaning that each matching
thread always processes packet data against one particular
DFA. Each packet is processed against all DFAs in order to
determine if there are any matches.

The synchronization thread has two tasks. The first is
to read data from the incoming next neighbor ring so that
the local matching threads can access it, as well as passing
the data to the next Matching Engine if there is one. The
thread’s main task is to handle synchronization of packet
data across the matching threads. Synchronization is imple-
mented through the use of a circular buffer stored in shared
local memory. The synchronization thread writes data to
the buffer so that the matching threads can read it. Each
matching thread can then proceed through the buffer at its
own pace, and the synchronization thread ensures that data
that has been processed by all the threads is flushed.

Each matching thread invokes its DFA on the input data
one character at a time. Alphabet translation is first per-
formed on the input character (the translation table is stored
in local memory). The next state is then found by traversing
the DFA, and processing continues with the next character.

27

Figure 9: Throughput results for the NPR.

As is shown in Figure 8, the DFAs are stored hierarchically
in memory with some state information in the scratchpad
memory, some in SRAM, and some in DRAM. The mem-
ory layout is generated ahead of time so that states more
likely to be reached are stored in faster memory. The figure
also shows an example of the actual state information. Re-
call that we use the default transition method noted above.
Each state contains a small number of labeled transitions
and a default transition. If none of the labeled transitions
are for the current input character, the default transition is
taken. The operational details are given in [1].

5. PERFORMANCE
We include here a brief performance evaluation of the

NPR as a baseline reference for plugin developers. UDP
flows consisting of equally sized packets were directed to
the router for aggregate input rates of up to 5 Gb/s, with
input and output bandwidth split equally among the five
interfaces. Figure 9 shows the forwarding rate when packets
proceed directly through the main pipeline with no plugins
installed. The different curves represent the output rate for
flows of different packet sizes, where the labels indicate the
UDP payload size of the packets. Note that the input and
output rates are reported relative to the external interfaces.
As such, an input rate of 5000 Mb/s means that all five
input links are completely saturated.

For packets with UDP payloads larger than 150 bytes the
NPR is able to keep up with any input rate. Streams of
smaller packets cause the router to drop packets at high
input rates. For 100 and 50 byte packets the output rate
levels off near 4 Gb/s. It is interesting to note that the out-
put rate is higher in the 50 byte case than in the 100 byte
case. This apparent anomaly is a product of the way the Rx
and Tx blocks interact with the external interfaces. Pack-
ets actually arrive in fixed-size cells which Rx reassembles
into full packets. A UDP payload size of 100 bytes forces
incoming packets to take two of these cells while 50 byte
UDP payloads can fit in a single cell. This means that Rx
has significantly more work to do in the former case which
results in a lower overall output rate. As packets continue
to decrease in size, the peak output rate continues to de-
crease. For minimum size Ethernet frames (UDP payload of
18 bytes) the output rate is around 3 Gb/s.

We performed the same evaluation with the entire input
stream directed through a single null plugin. The null plu-
gin uses the basic plugin structure described in Section 3.1

with an empty function to handle packets. The packets
are then forwarded to the QM. The results were identical
which means that a single plugin is capable of handling ev-
ery packet that the router can forward.

The NPR was also evaluated with the distributed gaming
plugins installed. There is not sufficient space for a full dis-
cussion of the results here, so a single benchmark result is
given. Recall from Section 4.2 that the multicast forwarder
plugins are responsible for generating multiple references to
incoming packets based on the current subscriptions for that
packet’s multicast group. In the NPR, the packet replica-
tion factor, or fan-out, can be between 0 and 4 as there are
5 interfaces and packets are never sent out on the interface
on which they arrived. To test the forwarding capability
of the multicast plugins, UDP streams with UDP payloads
of 150 bytes (a typical size for incremental game state up-
dates) were directed through the plugins. As with the base-
line evaluation, the input and output bandwidth was split
equally among the five interfaces. Note that as the fan-out
increases the input packet rate needed to produce the same
output rate decreases. The peak output rates for fan-outs
of 1, 2, 3, and 4 are, respectively, 4 Gb/s, 4.5 Gb/s, 4 Gb/s,
and 3.6 Gb/s. To understand this result, consider how the
workload changes as the fan-out changes. For low fan-outs
the plugins have to process more packets per second, but
the per-packet work is lower. On the other hand, when
the packet rate is lower the per-packet work is significantly
higher. This leads to optimal performance when the fan-out
is 2, given the characteristics of the router.

To explore the bottlenecks in our system, we used Intel’s
cycle-accurate simulation environment. Unsurprisingly, no
single block is responsible for not keeping up with line rate
for small packets. As mentioned above, Rx has limitations
for some size packets. For minimum size packets, both the
QM and PLC blocks peak between 3 and 3.5 Gb/s. We could
enable the main router path to perform better by using more
MEs in those cases, but we believe that their use as plugin
MEs is ultimately more beneficial. The traffic conditions
which cause the router to perform sub-optimally are also
unlikely to occur for extended periods. Under realistic traffic
patterns the router is able to keep up with line rate.

We also monitored packet latency during the above evalu-
ation by periodically sending ping packets through the router
and recording the round-trip time. When the router is other-
wise idle, the average RTT is around 100 µs with a standard
deviation of around 2 µs. Note that much of that time is
accounted for at the end hosts. The one-way, edge-to-edge
latency of the router is no more than 20 µs. As expected due
to the IXP architecture, these values do not change signifi-
cantly with a change in router load. Indeed, even under the
heaviest load for minimum-sized packets the average RTT
doesn’t change and the standard deviation only increases to
around 4 µs for packets that are not dropped.

6. RELATED WORK
Router plugin architectures are certainly not a new idea

[4]. Indeed, [3] describes a router already in ONL that has a
general purpose processor for running plugins on each port
of a hardware router. There have also been other exten-
sible routers based on network processors. For example,
[13] describes a router that uses the IXP 1200 network pro-
cessor for fast-path processing in a standard PC, and [16]
describes an ATCA-based platform that allows PlanetLab

28

[10] applications to achieve significantly better performance
by incorporating IXP 2850 network processors as fast-path
elements and line cards. In the traditional software router
space, Click [9] takes a modular approach to extensibility
by providing a framework for connecting various forward-
ing and routing modules together in an arbitrary fashion.
XORP [7] is similar in nature to Click, but it is focused
on modular routing stack components. Our work is based
in part on all of these previous efforts, but aims to fill a
different role. The NPR provides users direct access to a
significant portion of the router resources, a software base
on which to build, and the ability to have router code that
performs substantially better than on a standard PC. More-
over, our routers are already deployed in the Open Network
Laboratory which allows anyone to experiment with them
in a sandboxed environment.

There is another body of related work that aims specifi-
cally to ease software development for NPs. One example
is NP-Click [12] which provides a programming model that
abstracts away many of the architectural aspects that make
programming difficult. Shangri-La [2] is another example
where a compiler and thin run-time environment are used
to support higher-level programming languages. These sys-
tems employ many complex optimizations to bring applica-
tion performance to similar levels achieved by hand-written
assembly code. All of the work in this space is complemen-
tary to our work. Indeed, the NPR provides direct access
to the plugin MEs and so these approaches could be used to
produce NPR plugin code.

7. CONCLUSIONS
The NPR has already been used locally in an advanced ar-

chitecture class focused on multi-core processors. Students
were asked to use the NPR for their final projects, and all
ten of the projects were completed successfully. The projects
ranged from TCP stream reassembly to complex network
monitoring to network address translation. We have already
incorporated feedback from the class into the NPR and par-
ticularly into the plugin API. We are planning on further
extending this work in a few ways.

Plugin developers can currently only write code for the
MEs which can be somewhat limiting if they wish to sup-
port protocols that have complex control processing. For
example, the main router pipeline sends ICMP and ARP
packets to the XScale because they can require substantial
processing and there is no particular reason to handle them
in an ME. To support similar fast-path/slow-path structure
in plugins, we are adding a mechanism to allow plugin de-
velopers to supply XScale counterparts to their ME plugins.
More generally, our basic design could be used to build sim-
ilar plugin-based routers on other architectures. We hope
to explore this avenue with other network processors and
potentially with many-core general purpose processors.

Based on our experience so far, we believe that the NPR
is an excellent platform for network study and experimenta-
tion. Our plugin framework provides a flexible structure and
API that helps users unfamiliar with similar systems to build
expertise without hindering experts. The ONL provides an
isolated and safe environment to try out ideas before poten-
tially deploying them in the wild, in systems such as [16] or
in GENI. We are currently accepting ONL accounts, and we
strongly encourage any researchers interested in developing
expertise with these types of systems to apply.

8. REFERENCES
[1] Becchi, M. and P. Crowley. “An Improved Algorithm

to Accelerate Regular Expression Evaluation”, Proc.
of ACM-IEEE Symposium on Architectures for
Networking and Communications Systems, 12/2007.

[2] Chen, M. K., et. al. “Shangri-La: Achieving High
Performance from Compiled Network Applications
while Enabling Ease of Programming”, Proc. of ACM
SIGPLAN conference on Programming Language
Design and Implementation, 6/2005.

[3] Choi, S., et. al. “Design of a High Performance
Dynamically Extensible Router”, Proc. of the DARPA
Active Networks Conference and Exposition, 5/2002.

[4] Decasper, D., Z. Dittia, G. Parulkar, and B. Plattner.
“Router Plugins: A Software Architecture for Next
Generation Routers”, Proc. of ACM SIGCOMM,
9/1998.

[5] DeHart, J., F. Kuhns, J. Parwatikar, J. Turner, C.
Wiseman, and K. Wong. “The Open Network
Laboratory”, Proc. of ACM SIGCSE, 3/2006.

[6] Global Environment for Network Innovations.
http://www.geni.net.

[7] Handley, M., E. Kohler, A. Ghosh, O. Hodson, and P.
Radoslavov. “Designing Extensible IP Router
Software”, Proc. of the Second Symposium on
Networked Systems Design and Implementation,
5/2005.

[8] Intel IXP 2xxx Product Line of Network Processors.
http://www.intel.com/
design/network/products/npfamily/ixp2xxx.htm.

[9] Kohler, E., R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. “The Click Modular Router”, ACM
Transactions on Computer Systems, 8/2000.

[10] Peterson, L., T. Anderson, D. Culler and T. Roscoe.
“A Blueprint for Introducing Disruptive Technology
into the Internet”, Proc. of ACM HotNets-I
Workshop, 10/2002.

[11] Radisys Corporation. “PromentumTM ATCA-7010
Data Sheet”, product brief, available at
http://www.radisys.com/files/ATCA-7010 07-1283-
01 0505 datasheet.pdf.

[12] Shah, N., W. Plishker, and K. Keutzer. “NP-Click: A
Programming Model for the Intel IXP 1200”, Proc. of
Second Workshop on Network Processors, 2/2003.

[13] Spalink, T., S. Karlin, L. Peterson, and Y. Gottlieb.
“Building a Robust Software-Based Router Using
Network Processors”, Proc. of ACM Symposium on
Operating System Principles, 10/2001.

[14] The Open Network Laboratory. http://onl.wustl.edu.

[15] Turner, J. “A Proposed Architecture for the GENI
Backbone Platform”, Proc. of ACM-IEEE Symposium
on Architectures for Networking and Communications
Systems, 12/2006.

[16] Turner, J., et. al. “Supercharging PlanetLab a High
Performance, Multi-Application, Overlay Network
Platform”, Proc. of ACM SIGCOMM, 8/2007.

[17] Yu, F., Z. Chen, Y. Diao, T. V. Lakshman, and R. H.
Katz. “Fast and Memory-Efficient Regular Expression
Matching for Deep Packet Inspection”, Proc. of
ACM-IEEE Symposium on Architectures for
Networking and Communications Systems, 12/2006.

29

