Washington
University in St.Louis

SCHOOL OF ENGINEERING
Department of Computer Science & Engineering & APPLIED SCIENCE

2008-4

Partial Program Admission by Path Enumeration

Authors: Michael Wilson, Ron Cytron, Jon Turner

March 10, 2008

Corresponding Author: miw2@arl.wustl.edu

Abstract: Real-time systems on non-preemptive platforms require a means of bounding the execution time of
programs for admission purposes. Worst-Case Execution Time (WCET) is most commonly used to bound
program execution time. While bounding a program's WCET statically is possible, computing its true WCET is
difficult without significant semantic knowledge. We present an algorithm for partial program admission, suited
for non-preemptive platforms, using dynamic programming to perform explicit enumeration of program paths.
Paths - possible or not - are bounded by the available execution time and admitted on a path-by-path basis
without requiring semantic knowledge of the program beyond its Control Flow Graph (CFG).

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160

Partial Program Admission by Path Enumeration

Michael Wilson Ron Cytron Jonathan Turner
Department of Computer Science Department of Computer Science Department of Computer Science
and Engineering and Engineering and Engineering
Washington University in St. Louis Washington University in St. Louis Washington University in St. Louis
St. Louis, Missouri 63130 St. Louis, Missouri 63130 St. Louis, Missouri 63130
Email: miw2@arl.wustl.edu Email: cytron@cse.wustl.edu Email: jon.turner@arl.wustl.edu

Abstract—Real-time systems on non-preemptive platforms re- together, exceed the cycle budget. Demonstrating thaethes
quire a means of bounding the execution time of programs paths are mutually exclusive takes semantic knowleddegreit
for admission purposes. Worst-Case Execution Time (WCET) ,qvided by the developer or deduced by analysis at admissio

is most commonly used to bound program execution time. While fi | t d . this inf tion i ‘ded by th
bounding a program’s WCET statically is possible, computirg its Ime. In most domains, this information IS provided by the

true WCET s difficult without significant semantic knowledge. developer as branch constraints. For our virtualizatiopliap
We present an algorithm for partial program admission, suited cation, we cannot trust the developer; any semantic knayeled

for non-preemptive platforms, using dynamic programming o must come from the analysis.

perform explicit enumeration of program paths. Paths — posible . T . ~
or not — are bounded by the available execution time and We proposepartial program admission as a practical so

admitted on a path-by-path basis without requiring semantc lution to this Prob'em- By_explicitly gxamining all paths,ew
knowledge of the program beyond its Control Flow Graph (CFG) can perform static analysis to re-write 3rd-party appiars
to achieve the following goals:

I. INTRODUCTION 1) all “safe” paths (paths that complete under budget) are
admitted,

no “unsafe” paths (paths that complete over budget, or
that do not complete) are admitted,

no runtime penalty is imposed on any safe path, and
no semantic knowledge is required.

Admission control in real-time systems running on non-)
preemptive platforms requires the ability to bound the ex-
ecution time of applications. In a trusted environment, a)
single administrator can make an out-of-band determinatio 4)
of execution boundedness. Untrusted, shared environments .)
are more difficult. As an example of such an environment, TO re-write the program, we actually duplicate some code
consider network virtualization, which has been advanced Baths. While this causes some code expansion, or “bloat”, in
a way to foster innovation in the Internet [1]. practical cases the bloat proves to be within acceptabliéslim

In network virtualization, core router platforms host 3rd- Partial program admission seems at first glance to be a
party application code, running at Internet core speeds, gpeless process. It is uncommon for a developer to wish to run
lowing the creation of high-speed overlay services [2]. StheOnly some fragment of a program. However, our construction
platforms, of which the IXP 28XX is a representative examplér partial program admission is not intended for runningyon
usually have no preemption mechanism suitable for use ht higertions of a program, but for generating a new program where
speeds. Internet core speeds necessitate extremely iglet cthe proof of execution time correctness is trivial.
budgets for packet processing. To share this type of systenWCET analysis depends upon developer knowledge of
among untrusted parties requires stringent admissiorralont branch constraints to eliminate paths that, while present i

In other domains, instrumentation with runtime checks t&€ program, could never be taken. If the developer has met
enforce proper behavior is a practical solutions. Unfaataty, the desired budget goals, all paths that can actually bentake
Internet core speeds render runtime checks impractical. Wil be under budget. Only “impossible” paths are excluded.
5Gbps, an IXP 2800-based system with 1.4 GHz microengin@sthis way, we allow some code duplication to substitute for
and 8 hardware thread contexts has a compute budget of fietailed understanding of the program.
cycles. With such tight budgets, even a few runtime checks ca We also note that, during development, the program may not
guickly push otherwise admissible program paths over budglee under budget. The same partial admission can also serve to
A practical solution must therefore impose as little ruiminform the developer of program paths that have unexpected|
overhead as possible. run over budget. We view this algorithm as a development tool

Worst-Case Execution Time (WCET) analysis is the cugs well as an admission tool.
rently accepted approach. A WCET bound can be establishedVe present a theoretical construction that mirrors our al-
statically, assuming that all program paths are viable. él@k gorithm in Section Il. In section Ill, we present our actual
some well behaved programs might be rejected. For exammégorithm, followed by proofs of correctness in Section IV.

a program may have mutually exclusive code paths that, takéle follow up with some preliminary performance data in

Section V, related work in Section VI, and our plans for fetur
work in Section VII.

Il. ALGORITHM FOUNDATIONS

In this section we define the theoretical constructions on
which our algorithm is based. First, we describe the com-
putational model in which our solution works. Next, we
describe a series of graph transformations culminating in a
construction which meets our goals at the cost of significant
code duplication. Finally, we describe a means of redudieg t
code duplication.

These constructions form the basis of an algorithm which
is functionally identical to, but intractably slower thaour
algorithm.

A. Computational Model
Our algorithm should be considered in the context of g9: 1- CFG and the corresponding CFT. Weights along thesedgresent
cycle counts to traverse that edge. Total path cycle countprasented below

simplified processor. Our idealized processor has iN$tMEt each terminal node in the execution tree.

taking exactly one cycle to complete. All memory accesses

complete in one cycle. There is no pipeline. There is no

preemption. CFT duplicates nodes in the CFG as necessary, in order to

Our computational model is event-driven, where code g9nvert the graph into a tree.
executed only in response to these events. For the networle€ee Figure 1 for an example. Nodfsand 7" are dummy
virtualization application, the event is packet arrival. nodes used to delineate entry and exit points, and contain no

Each block of code must complete within some number gftual code. Similarly, in the CFT'1 —T'4 are copies of the
cycles, known at admission time. Cycles may not be “savedummy nodel’ and contain no code.
from one call to the next. The guarantee we must enforce isCode generated from the CFT is functionally identical to the
that, from the time the code is called to the time the cod¥iginal CFG. If the length of the path from the root node to a
returns control, it consumes no more than the cycle coufigdeu in the tree exceedB, then we can replace the subtree
called thebudget. rooted atu with an exception node, representing a jump to

Finally, we require the developer to add a “time-exceedetf’e exception handling routine. As an additional step, téraf
exception handler to her code. The exception handler agplying this step, the CFT contains a subtree whose leaves
required to adhere to strict coding guidelines which maatist are all exception nodes, we can replace the entire subttee wi
analysis simple and easy. an exception node.

The requirements of our model are sufficient, but not syrictl This pruning procedure is illustrated on Figure 1. Let us
necessary. Our algorithm continues to work so long as ayevéensider a budget of 10 cycles. While it would be valid to
node we examine, we carry all of the information necessary @secute the patil — C' — D2 — F'2 — G4 before aborting
determine the total execution time of every path beginning ® the exception handler, it is clear that any execution path
that node. For example, suppose we have a memory cache. Tle&ehing/"2 will go over budget. Our earliest chance to raise
execution time of subsequent instructions will depend updhe exception is by intercepting the branch instructioDat
the contents of the cache, which can be derived from prigfith the result shown in Figure 2.
instructions, memory layout, and the behavior of the cache.We refer to the tree constructed in this way asBraounded
Our model is chosen to simplify this information as much aecution tree of the original control flow graph. We note that
possible. such a tree can be defined relative to any node the CFG
B. Path Enumeration ?rzz .we lethxt s (u) (or generally, BXT) denote this execution

Our input to the algorithm consists of an assembly level while one could generate a version of the original program
representation of the program. From this, we can devel@Rectly from the BXT, this typically results in an excessiv
a Control Flow Graph (CFG) of the program, in whictamount of code duplication. We can dramatically reduce the

outgoing edges are labeled by the execution time requirgghount of code duplication by merging equivalent subtrdes o
for the corresponding program segments. Our objective tife BXT in a systematic way.

to derive a new CFG that executes the same sequence of o)

instructions for program executions that complete within & Code Duplication Reduction

specified time boundB, while terminating in an exception The BXT typically contains many subtrees that are identical

handler for program executions that exceed the budjet to one another and can be merged. To make this precise, we
The conceptual starting point for this construction is théefine two nodes:; anduy in the BXT to beequivalent if

creation of aControl Flow Tree (CFT) from the CFG. The they were derived from the same nodén the original CFG

f{f

Fig. 2. Abort to exception handler Fig. 3. Merging of equivalent execution subtrees

(that is, they represent copies of the same original programWe can extend this notion to path costs that are “close.”
segment). Two subtrees of the BXT are equivalent if they a&ven nodes:; andu. derived fromu, with path costs from
structurally identical and all of the corresponding nod@spathe root of p and ¢ respectively, they will have identical
are equivalent. We can merge any pair of equivalent subtresbtrees ifbxtp_,(u) = brtp_q(u). This will be true for
without changing the set of executions, yieldingoaunded values of B —p and B — g that are “close enough” in a certain
execution graph (BXG) equivalent to the BXT. Conceptually, sense.
the merging is performed in a top down fashion. That ig;;if =~ For each node: in the original CFG, the dynamic pro-
andu- are roots of equivalent subtrees, we merge them so logtgamming procedure produces a partition on the integers
as there are no ancestars of u; andwvs of uy that are also corresponding to a partition on subtrees. Two valuesd j
roots of equivalent subtree. The merging process contjragsesfall in the same equivalence class of the partition if andyonl
long as there are equivalent subtrees that can be merged. if bxt;(u) = bxt;(u). Using these partitions, we can construct
Returning to our example, nodd31 and D2 cannot be the BXG directly from the CFG, without having to explicitly
merged because their child execution trees are diffed®@mt. construct the BXT.
has children®’1 andF'2; D2 has childrenE2 and X . However, As we prove in section 1V, this partition of the integers$all
the subtrees rooted @1 and E2 are identical. There is no into contiguous ranges from a minimum value to a maximum
need to retain both trees. Instead, we can merge them intgadue, and including all values between. For our algoritiue,
single subtree. Even further, the tree rooted-atis identical refer to these partitions of the integers iatervals, and use
to the subtrees rooted ét1 and G3. We can also merge thethese as the basis for a memoization scheme.
G2 node with theG1/G3 node from theE1/E2 execution

tree. See Figure 3.)
In contrast to the massive code duplication in the BXT, in Before we formally present the algorithm there are several

IIl. THE ALGORITHM

the BXG only one nodel}) needed to be duplicated. preliminary details to define. _
First, we assume that the code has already been read into
D. Intervals a CFG with.S and T' nodes.w(u) represents the cycle cost

While one can derive the BXG by explicitly constructingo traverse node, represented as an outgoing edge weight in
the BXT and then merging nodes, there is a more efficiepur CFGs.
dynamic programming procedure that can be used to construc¥Ve also assume that we have QITERVAL data type. We
the BXG directly. This procedure is based on the observatig@present eaciNTERVAL as a pair(a, b] wherea < b. Each
that the structure of a BXT subtree with root node is INTERVAL is treated as the sdtr|a < x < b}, with the usual
a function of just two things — the node in the original definitions for intersection, subset, overlappingERVALS,
CFG from whichu; was derived and the amount of availabl@lisjoint INTERVALS, and element predicatec). We define
execution time that remains after execution has reachetf ~ scalar addition on amNTERVAL as|a,b] +z = [a +x,b + z].
the cost of the path from the root tq is p, then the remaining Finally, we define theaull INTERVAL as the empty set.
execution time isB — p where B is the overall bound. We Given theINTERVAL type, we define anNTERVAL search
note that the BXT subtree with roat is bztp_,(u). So two Object with two functions.
nodesu; andu, derived from the same CFG nodewill have o INTERVAL function insertfrertex v, INTERVAL i)
identical subtrees if the costs of their paths from the roet a Adds a tuple< v,i > to the search object; returns the
identical. INTERVAL.

INTERVAL function bxg(integer R, vertex u)
INTERVAL i
i :=find(u,R)
return if i # null — i
i=nulland R < é(u,T) — insert(u,F-00,6(u,T)-1])
i=nulland R > 6(u,T) and u = T — insert(u,[0pc])
i=nulland R > é(u,T)andu# T

1) Computational Complexity: We can associate each re-
cursive call with an edge in the CFG. Let us examine the
algorithm in terms of the number of recursive calls per edge.

For us to insert a vertex-interval pair, we must reach the
vertex by a series of bxg calls. Since the remaining cycles
R is monotonically non-increasing from B, and we have at

: most one negatively-lower-bounded interval at each vertex
- msert(tje,dgd(g\)/v(u,v)+bxg(v,R-w(u,v))) there are at mosb(B) intervals associated with each vertex.
fi We only make recursive bxg calls along outgoing edges on
end the first failure to find an interval in the interval searcheutj
(Thereafter, the interval will be present.) Therefore, vea c
Fig. 4. Pseudo-code of the algorithm (Tarjan notation) make at mosO(B) recursive calls along each outgoing edge.

Next, let us examine the number of operations per recursive

call. We have two non-constant operations per call—a single

u
u

« INTERVAL function find(vertex v, integer x) search of the interval search object, and a possible singéeti
Returns thaNTERVAL associated with vertex in which into the Object_ Both can easny be imp|ementeﬁ$og B)
z is found, ornull if N0 SUChINTERVAL exists. operations using a standard interval search tree asseiitte

Finally, we presume that we have pre-computed the shortestch vertex [3].
paths from each node B by Dijkstra’s algorithm or another By an aggregate analysis over edges, we héfeiB)
applicable shortest path method, and stored these valuegeioursive calls, usingn for the number of edges. Each

5(v,T). takesO(log B) time, for a total computational complexity of
] O(mBlog B).
A. The Algorithm 2) Spatial Complexity: Spatial complexity of the emitted

Our algorithm is a dynamically programmed, recursive exode for a vertex in the CFG depends upon three factors: the
ploration of all reachable vertex and interval tuples redtd number of paths fronf' to the vertex, the number of paths
from the root,S. In pseudo-code, our algorithm is as showfrom the vertex tol’, and the budgeB.
in Figure 4. At each vertex, we emit duplicated code corresponding to

To construct the BXG for a CFG and budget B, we caktach interval that is botbresent andreachable from the source
bxg(B,S). The BXG is built implicitly in the interval search S by paths of cost no more thaf.
object; each insert operation adds a vertex to the CFG. Edge#dividual budget values at vertexare divided into equiv-
are embodied in the constructed hierarchyrofERVALS. We alence classes by the weight of each path frote 7'. More
will refer to a BXG node awi, j] whereu is the node in the precisely, we have exactly one interval present for each pat
original CFG, andj, j] is an interval over which albzt,(u) fromu toT of distinct cost, plus one for exceptions. Therefore,
are identical, as long as< z < j. the number of paths of distinct cost framio 7" forms an upper

To extract the BXG, we can walk through the interval seardround on the number of intervals that may be present at
object. For each interval we encounter where the lower lisnit Each interval corresponds to some number of cycles remain-
not —oo, we emit the node; otherwise, we emit the exceptiong at this point in the CFG. For an interval to be emitted, it
handlet. For each child of the node we emit, we create amust bereachable: there must be a patph from S to that
edge to the copy of the child with aNTERVAL that contains vertex such thai3 — w(p) is within the interval. Therefore,
the currentNTERVAL, adjusted by the connecting edge weighthe number of paths of distinct cost frofito each vertex is
Thus, the node([8, 9] with outgoing edge weight 2 might havean upper bound on the number of emitted intervals.
children v1[5, 7] and v2[6, 10] (both containing the interval As a direct consequence of this and the monotonically non-

[8,9] —2=16,7].) increasing budget, the number of intervals we emit is upper-
_ bounded byB.
B. Complexity Thus, our spatial complexity is upper bounded by the

There are two types of complexity that matter for thigninimum of three factors: the number of paths 9 the
algorithm. First, we have theomputational complexity of number of paths fronf, and the budges.
the algorithm. Second, we have thgatial complexity of the
generated code.

This algorithm is intended for static analysis of program Th_ere are two natural extensions of this algorithm that bear
code submitted for admission. The algorithm will run oncgention.
at admission time and then (if admitted) never again. Thus,1) Variable Budgets: Our context of network virtualization
while we need the computational complexity to be feasibke, W8 event-driven by packet arrival. Performance guarardgees

consider spatial complexity to be the more important factormissed in the networking context when packets have arrived
at the inputs but are unable to be processed fast enough to

LTechnically, we emit aall to the exception handler. forward them to the output at line rate, resulting in output

C. Natural Extensions

Fig. 6. Bounded execution flow graph (BXG) with variable betig

underflow and queuing. If the problem is persistent, packets
will be lost. In the case of a shared processor, there is no wa

but the semantic knowledge is unnecessary. It could serve to
reduce the code duplication, of course.

Variable budgets are not free. We do have a small constant
cost in the test-and-branch for budget selection. Since we
increase the number of early branches, this also serves/o dr
up duplication of nodes. Nevertheless, for packet prongssi
this is a worthwhile investment.

2) Notify and Continue: We consider it worthwhile in our
problem context to consider a modification to the paradigm
of partial admission. We currently view the exception handl
as an abortion of the code block. However, we could use the
exception handler to register a notification that we wentrove
our budget, then continue execution.

This requires a modification to our algorithm. Presently,
our algorithm prunes away all subtrees that go over budget.
To notify and continue, we would need to return to the
flow of execution. To incorporate this notion, we would need
to modify the algorithm to add an outgoing edge from the
exception handler back to the node we pruned, with an
unbounded budget.

Using completely unbounded budgets also requires that our
algorithm be adjusted to deal with loops as a special case.
Because nodes that sit along paths containing cycles may hav
an unbounded number of intervals, we would need to explicitl
recognize that an unbounded budget forms a special inferval
and to handle this separately.

IV. PROOFS OFCORRECTNESS

Our proofs of correctness proceed as follows. First, we
present a rigorous treatment of the constructions from CFG
to CFT, BXT, and BXG. Next, we prove the key properties
of the constructions. Finally, we demonstrate that our dyica
programming algorithm creates our BXG and therefore has all
of our required properties.

A. Bounded Execution Subtrees
hile it is conceptually clear to proceed from the CFG

to guarantee that discarded packets belong to the offendifigth® CFT and thence to the BXT, this is mathematically

code.

However, not all packets are the same size. Since a lar

packet will take more time at the output, we have more ti
for processing. Fortunately, our model can be easily exdén
to cope with this situation without changing the algorithm.

inconvenient. In the case of a cyclic CFG, the depth of the
gyresponding CFT is unbounded. We prefer to work within
e domain of finite graphs. Therefore, we proceed directly

0from the CFG to the BXT.

Given a CFGG = (V,E,s,t,w) whereV is the set

Let us take our example of Figure 1 and extend it igf vertices, E is the set of directed edges connecting these

handle packets of two sizes, with cycle budgets of 6 and

ygrtices,s iS our source vertex, is our sink vertex, andv is

respectively. We can do this by adding code at the beginnifigV€ight function over edges, we construct a BXTrom &
of the CFG to check the length of the packet and jump to tif& follows.

appropriate starting point for this length.

Initialize T' to have a single vertex and assign

See Figure 5. Here we have the modified CFG. Our new a label\(r) = s. For any nodeu of T, let p(u) be
start nodeS, contains the code to check the packet length and the path fromr to u, and extend the weight function

branch toS1 for short packets anf2 for the long packetsS1

w to paths in the natural way. Repeat the following

and.S2 do not actually generate code, but are entered into our step as long as possible.
CFGasif they cost 4 and 0 cycles, respectively. To analyze the Select a leafu of T with A(u) # t and
CFG, we simply call bxt§,10) as usual, resulting in Figure 6. w(p(u)) < B. Letv = A(u) and letwvy,... v

The algorithm is unaware that no long packets will re&dh

be the successors ofin G. Add nodesus, ..., us

to T with edges(u,u;) and let A(uw;) = v; and During the relabeling step of the pruning stage, all nodes
w(u, u;) = wv,v;). over the budget are relabeledX¢u) = X. Since these are all
This intermediate construction is the CFT up to and just ovi&af nodes, they represent the roots of closed subtreese Sin
the budget frontier. That is, we continue to build on our patt{h€ pruning stage can never open a subtree once closed, the
until all leavesu (andonly leaves) are either over budget oforresponding truncated subpath will always terminaterin a

correspond td. We convert this to our BXT by the following €xception, although it may be further truncated. L
pruning steps. Theorem 4 (Equivalent Functionality)If G = (V, E, s, t,w)
For all nodesu in T' with pathp = r ~ « and is a CFG andl’" = bxtg(s) is the corresponding BXT, then all
w(p) > B, let \(u) = X, whereX is a new label pathsr ~ « in T with A\(u) # X have labels that correspond
denoting “exception.” directly to paths inG.

Call a subtree of" open if it contains a node
with A(u) = ¢. Otherwise call it closed. For every
node that is the root of a closed subtree and whose
parent is not, prune the subtree andXét) = X.

Proof: By our construction, no path entefS without
coming from a corresponding pathd# and labels are retained
pointing back to the original nodes i&. Since the pruning
_ _ i)) phase only relabels t&, and completes with only leaf nodes

The treeT" obtained in this way is calledztp(s). Since (gjaheled, all labels on safe subpath<irare retained. m
the construction can be applied equally well to any nade We can usel to create a program that is functionally

G with any non-negative budgéf, we can also usértz(u) gquivalent to the parts af that stay under budget but which
to refer to any subtree of the BXT rootedtso long as we g gyaranteed to finish within budget (eitherrar at X). For

adjust the budgeB appropriately. o each vertex: in T, we generate code equivalentt6u) from
The batp(s) has four important characteristics: completge original CFG. E.g., see figure 2.

ness, boundedness, termination, and equivalent fundityona

Theorem 1 (Completeness)if G = (V, E, s, t,w) is a CFG B. Bounded Execution Flow Graphs

andT = bxtp(s) is the corresponding BXT, then all paths The BXT construction repeats many code segment unneces-
s~ t with cost less tharB have corresponding paths i sarily. We can generate a more compact program by merging
identical subtrees iff" to produce a new CFG, thBounded
Execution Flow Graph, bxgg(s), or BXG.

We first define our notion of equivalent subtrees. ebe
bxtp(s) of some CFG. Let there be two nodesandv in

T with childrenuy,...,u; andvy,...,v;, respectively. We
consider the subtrees rooted«atand v to be identical when
A(u) = A(v) and all subtrees rooted at corresponding children
Theorem 2 (Boundedness)Iif G = (V, E,s,t,w) is a CFG are also identical.

andT = bxtp(s) is the corresponding BXT, then no path in We begin creating our BXGG from T by copying T’

Proof: Suppose there were a pathin the CFG with
w(p) < B but no corresponding path . Without
loss of generality, leto be the shortest such path, and Ie(lj‘
p=s~u—v. Theno = s ~ u must be inT. However,
we have an available construction step from negeo our
construction was incomplete. ThuB,cannot bebztg(s). B

T has cost greater thaB. completely. Next, we repeat the following step as long as
. . ossible.
Proof: Suppose there were a paihin T with w(p) > B. poSs
Without loss of generality, lep be the shortest such path, Select nodes andv from G where the subtrees
and letp = s~ w. If u has no descendantswith \(v) = t, rooted atu and v are equivalent and their parent
then the subtree rooted atis closed and should have been ~ nodes are not. Merge these subtrees as follows.
pruned during the pruning phase. Alternatively, suppodees Prunev and all descendant nodes froth For

have descendant with A(v) = . Because path costs are ~ ©ach node we prune, if there is a parent not in the
monotonically non-decreasing, we know that the cost from Subtree, replace the incoming edge with an edge to

to v also exceeds3. Then it should have been relabeled to the corresponding node in.

A(v) = X during the relabeling phase of the pruning step. In This construction retains all four properties of the BXT,
either caseI’ could not have beetrtg(s). m Completeness, Boundedness, Termination, and Equivalent

N B . Functionality. Since each property relies upon the (downjva
Theorem 3 (Termination) If G = (V, E,s,t,w) is a CFG . Structure of the subtree rooted at each node, and these struc

andT = btz (s) is the corresponding BXT, the_n all paths i ures have not changed, no properties have been lost.
G that exceed the budgé?® have a corresponding truncate

. o . In the case of Completeness, no subtrees have been pruned
subpath inT" terminating at exception node X. . L . . .

without re-pointing the incoming edges at an equivalent sub
Proof: From the construction, we know that constructiotree. This applies to all paths, not just paths under budget.

continues until for all leaves either A\(v) = ¢ or p(u) > B. In the case of Boundedness, no paths have been lengthened
Thus, for each path irG that exceeds the budgé, there (or shortened). Thus, iI" were properly bounded, so G.
is a corresponding subpath i that runs beyond the budget In the case of Termination, no paths have been lengthened
frontier. and no nodes have been relabeled.

For Equivalent Functionality, the equivalence property dfheorem 6. Given a budgetB, = B — w(p(u)), a nodeu

subtrees depends upon identical labels. with A(u) # ¢t andk childrenu,, ..., u; and known maximal
. intervals for each child a$i1,j1],..., [ix, jx] such that for
C. Correspondence to Algorithm each zth child, B — w(u,u,) € [is,J.], We can compute

Proving that our algorithm corresponds to this constructidhe corresponding maximal interval for the parent nadas
requires demonstrating several properties of our intsrval the intersection of the child intervals, each shifted ulay
1) Intervals. We prove two properties of intervals to assistv(u, u;). That is:
in proving that the algorithm corresponds to the BXG con-

k
struction. [fus Ju) = ﬂ ([tay Ji] + w (s uz)) 1)
Theorem 5. Given a BXTT generated from CF&, consider o=l

two nodesu and v in T with A\(u) = A(v) and identical is the maximal interval at containingB.,.
subtrees. Lep(u) be the path from the root to v and p(v)

be the path from root to v. Leti = B — w(p(u)) andj = there are paths from(u) to ¢ in G. However, these paths
B —w(p(v)) be the remaining cycles atandv, and assume ¢, ngist of the union of all paths from(u,) to ¢ in G with
W|th.0ut loss of generality that < j. If there is a third pode A(u) prepended. Let us denote the paths framto our sink
2 with A(2) = A(u), pathp(z) from rootr to 2, andi < 55, ~Thys, given the weight of paths,, for u, asw(psy),
B—w(p(z)) < j then the subtree rooted afs also identical. the weight of the corresponding paths framare w(u, u.) +
Proof: Consider the (unbounded) CFT we could generate(pzy). This accounts for the upward shift by(u, u..).

from any nodeu in T, consisting of the collective enumera- Also as in Theorem 5, these paths can be ordered indepen-
tions of the (possibly infinite number of) paths froxtw) to ¢+ dently of B,. Given interval[i,, j,] for child u,, we know
in G. For each path; there is a corresponding weighi(p;). that these limits represent the budget points where for some
This weight does not depend on the incoming budget tf ¥, B — w(p(u.)) — w(psy) changes sign. (Increasing beyond
B, = B — w(p(u)). j» Will cause a negative valu® — w(p(uy)) — w(pzy) tO

We can order these paths as, ..., p. wherew(p;) < become zero; decreasing belewwill cause a positive value

< w(pg). If we reduce the incoming budgeB, of B —w(p(usz)) —w(psy) to become negative.)

batp, (u), we will be forced to relabel and prune those leaves Since we are given that the upwardly shifted intervals are
where B, — w(p;) < 0. Since our path weights and theoverlapping, we know that there is some vallig contained
ordering are independent of the incoming budggt if we Within each shifted interval. That is3, € [z, ju| + w(u, uz)
relabel and prung, then we will also relabel and prune allfor all z. If we sort the pathg,, in weight order, there will
pathsp; with weightw(p;) < w(p;). be some smallest value greater th&p) selected from the

Now, givenu, v known to be the roots of identical subtreeg= + w(u, u;) values, and some greatest value less than
with corresponding cycles remaining= B — w(p(u)) and selected from the, +w(u, u,) values. These are the endpoints
i = B—wp®), i < j, we know that the leaves of Where the most sensitive path changes state. This is the very
these subtrees have identical labels. Suppose there waee s@efinition of interval intersection. u
subtree rooted at with i < B — w(p(z)) < j and subtree Finally, by definition, the intervals for nodewith A(u) =t
differing from the one rooted at. Since we know that are[—oo, —1] and[0, oc]. Thatis, we completed under budget
decreasing the available cycles can never admit additioffayve reached without going negative on cycles.
paths, andw(p(u)) > w(p(z)), we know that the subtree Using these maximal intervals, we can merge all subtrees
rooted atu has fewer paths to the sink under budget. with remaining budgets3 within the same interval.

Let us consider these subtrees after relabeling, but before?) Algorithmic Correctness:

pruning of closed subtrees. To differ from the subtree @otgpeorem 7 (Algorithm computes maximal intervalsjGiven
atu, the subtree rooted atmust have some leaf at the end o, cFg ¢ = (V,E,s,t,w) and budgetB, our algorithm

Proof: We use the same construction as in Theorem 5.

a pathp, with a label differing from the corresponding |eafgenerates only maximal intervals.

in the subtree rooted at where B — w(p(z)) — w(px) > 0 _ o

but B — i — w(px) < 0. But becauseB — w(p(z)) < j, if Prpof: Given nodeu_and remaining budgeR, our algo-

B—w(p(z))—w(pr) > 0thenB—j—w(p;) > 0 as well. This rithm first looks to see if we already have nodg, j] such

implies thatu, # v, contradicting our original assumptionm that B € [i, j]. This is our dynamic programming step and
Consequently, for each nodethe integers fron to B can €Xists only for optimization. We may ignore it in our proof.

be divided into subranges such thiaand j are in the same Next, we check to see if we're over budget (pruning step).

subrange if and only ibat;(u) = bat;(u). We can represent SUPpose we will exceed our budget. The pre-computed short-
these subranges as intervalsj] wherei < ;. est path values allow us to immediately compute the maximal

For each budgeB and nodew, there exists a maximal interval without examining the children. First, we know tha
interval [i, j] such that there is no value not within this the subtree rooted at is closed, as all paths to the sink are
interval wherebat; (u) = baty(u) = bat,(w). longer than our remaining budg&t A closed subtree has an

interval unbounded on the left. Finally, we have the shortes

Code Duplication Distribution IPv4 Header Format

100 300
»n 90
g 80 250 -
- /0 2 200 |-
Y S
q_) -
2 50 § 150 +
% 30 £ 100
a 20 50 L

10

0 0 1 1 1 1 1 1 1 1
12345678 910111213141516171819 0O 20 40 60 80 100 120 140 160
Maximum Duplication Required (Normalized) Budget (cycles)
Fig. 7. Percentage of synthetic CFGs requiring more than plichtion Fig. 8. Code duplication on real CFG (IP Header Format)

(from run of 1000 synthetic CFGs)

)) CFGs, we addedhile, do/while, andfor loops. In both cases,
path weightd(u, T), which tells us at what value of the 0 ynjical size of the synthetic input CFG was roughly deubl
first path becomes admissible. This provides the upper boupd gize of the largest packet processing code block we have

on the maximal interval. seen in our router virtualization efforts, and quadruple th
Suppose we're not over budget. We also check the baﬁi?get size for a typical code block.
step of our recursive definition in Equation 1._If we match the £, o ine Figure 7. This represents the results of running the
Smk. (\(u) = 7), we can compute the result directly from thealgorithm on 1000 different acyclic synthetic CFGs. We show
bas!s. . , , the resulting distribution of the maximum code duplicatiac-
Finally, if we don't have a shortcut, we follow Equation 1y, o4 ired for each synthetic CFG over all possible buslget
Since our pruning step computes maximal intervals directly o \ast majority (82%) require a maximum duplication facto
and our basis step does the Same, all we have left 'S Gt8m 1-2, with an average maximum of 1.6. Large duplication
recursive step. By Theorem 6, this also computes the maxinggli,s are actually very rare; one pathological case redu
interval for u. ,)) duplication factor of 23.5. Subsequent analysis of thisvga
Therefore, all intervals computed will be maximal. B gqved that it was composed almost exclusively of a series of

Theorem 8 (Algorithm computes only necessary intervalsyiestedswitch/case statements.

Given a CFGG = (V, E, s,t, w) and budgef3, our algorithm The results on cyclic CFGs are uninteresting and omitted.
only computes intervals reachable from the source within oWhile the algorithm works on cyclic CFGs, it works by
budget. implicitly unrolling the loop to the limit of the budget. Thu

the code duplication factor is bounded only by the budget. As

Proof: Our algonthr_n .proceeds n erth—flrst search frorBxpected, in simulation the code duplication factor forlicyc
s, and therefore only visits those vertices reachable from raphs is linear in the budget

Since the cycles remaining is decremented appropriately “at
each recursive call, we also only investigate those inte8r'vas Real CFG: 1Pv4 Header Rewriting
[|

we can actually reach.)
For a real CFG, we used the code that rewrites the |Pv4

Theorem 9 (Algorithm Correctness) Given a CFGG = header for next-hop forwarding. This consists of 180 instru
(V,E,s,t,w) and budgeB, our algorithm generatésigs(s). tions, designed to run at over 5 Gbps on our virtualized moute

Proof: Follows automatically from Theorems 7 and@. ~ See Figure 8. The real CFG necessitated some minor
modification to the algorithm to deal with pipeline stallsedu

V. PERFORMANCE to unfilled deferral slots.
We have implemented this algorithm and tested it on aAt very small budgets, the algorithm actually generagss
variety of CFGs and budgets. code than the original CFG. This is due to pruning when
] the budget is too low for this code block. That is, so many
A. Yynthetic CFGs paths are pruned that many vertices are never emitted at all.

Our synthetic CFGs were generated by a series of vertégr most application code, this represents a serious daselo
substitutions that parallel grammar production rules inlik€ error and would be reported as such. It is simple for our
language. For our acyclic CFGs, we include simple statesnerdalgorithm to report when certain paths are never admitted, a
if, if-then-else, and switch/case statements. For our cyclic we implemented this in our experimental version.

Above 108 cycles, we reach the maximum length path Real World Details
of the CFG. At this point, all paths are admissible and no

duplication is necessary. The original CFG is accepted Wifgllthrough. When a branch is reached, we can re-write the

no modification. target address. The other side of the branch will simply fall
A suitable budget for 5 Gbps would be 170 cycles. Clear|¥traight through. In consequence, only one block can fall

we are under 170. For 10 Gbps we need 85 cycles. The IRyd, ,oh to another block. To have multiple blocks fall thghu
header format code is not currently able to achieve 10 Gb?é'the same target requires additional changes

as the chart makes obvious. Even worse, 85 cycles is the pea
of our code duplication, at 296 instructions. This stilllgea
duplication factor of only 1.64, well in line with our syntlie
cases.

First, we have neglected the problem of control flow

|5or cases where paths are not close to budget values, we can
simply insert a jump instruction. When this is not practjeed

can continue to duplicate code until we reach a point where
we can merge the paths. For the IXP architecture, this i$ylike

to be soon—a vacant pipeline deferral slot provides thelsing
slack cycle we need.

The major competing technology is WCET analysis using Next, the IXP architecture supports asynchronous memory
mixed integer programming [4]. This differs from our workaccess to allow developers to hide memory latencies. In
in that it makes no effort to solve the code emission problemractical development, both a compute budget and a memory
and requires that we trust the developer to provide semarititency budget must be maintained and respected. Addisg thi
information on branch constraints. functionality to the algorithm appears to be straight-farsy

Our problem is different. We need to accept and handbeit the impact on code duplication must be examined.
untrusted code in a shared environment. Thus, we must derivhe IXP is a heavily multithreaded environment. In our
any semantic information from the program, not the developetudies, we have only considered applications with no 4inter
In the absence of programmer specific semantic informatiahread dependencies in packet processing. Higher, trusted
we can re-write programs to create provably safe CFGs Vayers ensure in-order packet forwarding, but processautg c
code duplication. has never required inter-thread dependencies. This asgsump

We also note that the decision to use integer programmiisgnaive and needs to be examined. It may be possible to
to solve the WCET problem was because the developexnstruct a multi-threaded model of our CFG, analogous to
considered explicit path enumeration infeasible. Thitsf the work with WCET analysis in [6].

VI. RELATED WORK

consider the possibilities of dynamic programming. Finally, this algorithm only applies to CFGs. A function
call has no place in a CFG. Most heavily optimized, high-
for (i=0; i<100; i++) { speed networking code inlines all functions for speed. &s¢h
if (rand() > 0.5) j++ cases, the code represents a CFG. However, for code that does
el se k++; not inline, we have control flow that cannot adequately be
} represented in a CFG. One approach would be to implicitly
Fig. 9. “Difficult” WCET analysis for explicit path enumerah inline the function calls and analyze normally; then usew ne

merge rule to combine inlined function code when possible.
Consider the code snippet in Figure 9. The argument is that
this snippet containg!®® possible paths, and that to enumeratB. Improvements
them all is simply impractical. However, using a dynamic

) ; .~ We have also identified additional ways to reduce duplica-
programming approach with loop bounds, we can determlﬂ

) . -) 6n. One immediate gain can be made by noting duplicated
WCET;OF this snlpﬁethlp rlllr:gear tlrg.e. N , paths that contain no safe paths “close” to the budget. We
Another approach which bears iscussioRieof Carrying can merge these paths by adding runtime checks that lengthen
Code [5]. In this approach, the developer generates a proofg fe paths but do not actually push them over the budget. One
the correctness of the block of code which can be validatﬁ ssible way to reduce the expense of the runtime check is
automatically at load time. This approach could be ve i}ﬁspired by Ball and Larus [7], who developed single-counte

promising for our prolblem context. However, it places the bu ethods for tracking execution paths through a CFG and
den of generating this proof squarely on the shoulders of tE plied those to optimize the “hot’ paths. In our work, we

developgt:i We %refer to allow the develo?er?s much freed interested in using the same techniques to differentiat
as possible, and generate our own proofs of correctness. ¢.¢. s unsafe paths.

Much greater gains can be made by extracting semantic
information from the code itself. If we have complete sentant

Our current implementation of the algorithm does not yéhformation, we can avoid path enumeration for impossible
perform emission, nor does it incorporate a parser to accgatths in the CFG. The problem becomes a limited, finite form
real-world code. This is our current developmental prgritof the Halting Problem: does this code, when started with any
and requires addressing a number of “real-world” issues wé the possible inputs, halt withif cycles? Any finite form
neglect in our theoretical version. of the Halting Problem is decidable.

VIl. FUTURE WORK

We believe that a data flow framework solution is appropri-
ate. With explicit path enumeration, we can solve the cartsta
propagation problem to completion over branch conditions.
This would allow us to deduce loop iteration bounds, muyuall
exclusive paths, and even unreachable code.

We consider this the most important area for additional
study. The current state of the algorithm allows duplicatio
stand in lieu of semantic knowledge. Code that is semaitical
safe but unsafe in the CFG can be admitted by rewriting the
code to guarantee that the unsafe but semantically imgdessib
paths are never taken. With a complete semantic analysis, we
would never need to strip those paths, and our code duplicati
would be reserved for those cases where a genuinely unsafe
path is included.

In our application of event-driven, tight budget real-time
guarantees, this line of research is very promising. Thelbarm
of input values to examine is limited by the paucity of avaléa
cycles for reading data from memory. We know that our
constant propagation will never need to deal with more than a
few dozen values, because any code that examines more than
this will be over budget due to memory latencies.

VIIl. CONCLUSION

In this paper, we have introduced a new technique for par-
tial program admission. We have demonstrated that dynamic
programming can be used to render explicit path enumeration
eminently feasible. The same construction can be used tb emi
a modified CFG that meets event-drive real-time guarantees.

This method shows great promise in the realm of network
virtualization. Other applications in similar fields may be
equally promising.

REFERENCES

[1] J. Turner and D. Taylor, “Diversifying the internet,” I£EEE Globecom
2005, St. Louis, MO, Nov. 2005.

[2] J. Turner and N. McKeown, “Can overlay hosting serviceske ip
ossification irrelevant?” irProc. PRESTO: Workshop on Programmable
Routers for the Extensible Services of TOmorrow, May 2007.

[3] T. Cormen, C. Leiserson, R. Rivest, and C. Steintroduction to
Algorithms. Boston, MA: MIT Press and McGraw-Hill, 2001.

[4] Y.-T. S. Li and S. Malik, “Performance analysis of embeddsoftware
using implicit path enumeration 3GPLAN Not., vol. 30, no. 11, pp.
88-98, 1995.

[5] G. C. Necula, “Proof-carrying code,” iGonference Record of POPL '97:
The 24th ACM S GPLAN-SIGACT Symposium on Principles of
Programming Languages, Paris, France, jan 1997, pp. 106-119. [Online].
Available: citeseer.ist.psu.edu/article/necula97foawying.html

[6] P.Crowley and J. Baer, “Worst-case performance estimdbr hardware-
assisted multi-threaded processors,Piroc. HPCA-9 Workshop on Net-
work Processors, 2003.

[7] T. Ball and J. R. Larus, “Efficient path profiling,” irMICRO 29:
Proceedings of the 29th annual ACM/IEEE international symposium on
Microarchitecture. Washington, DC, USA: IEEE Computer Society,
1996, pp. 46-57.

	DepartmentName: Department of Computer Science & Engineering
	ReportNumber: 2008-4
	Date: March 10, 2008
	Email: Corresponding Author: mlw2@arl.wustl.edu
	Notes:
	Footer1: Department of Computer Science & Engineering - Washington University in St. Louis
	Footer2: Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160
	Abstract: Abstract: Real-time systems on non-preemptive platforms require a means of bounding the execution time of programs for admission purposes. Worst-Case Execution Time (WCET) is most commonly used to bound program execution time. While bounding a program's WCET statically is possible, computing its true WCET is difficult without significant semantic knowledge. We present an algorithm for partial program admission, suited for non-preemptive platforms, using dynamic programming to perform explicit enumeration of program paths. Paths - possible or not - are bounded by the available execution time and admitted on a path-by-path basis without requiring semantic knowledge of the program beyond its Control Flow Graph (CFG).
	Title: Partial Program Admission by Path Enumeration
	Author: Authors: Michael Wilson, Ron Cytron, Jon Turner

