


Partial Program Admission by Path Enumeration
Michael Wilson

Department of Computer Science
and Engineering

Washington University in St. Louis
St. Louis, Missouri 63130

Email: mlw2@arl.wustl.edu

Ron Cytron
Department of Computer Science

and Engineering
Washington University in St. Louis

St. Louis, Missouri 63130
Email: cytron@cse.wustl.edu

Jonathan Turner
Department of Computer Science

and Engineering
Washington University in St. Louis

St. Louis, Missouri 63130
Email: jon.turner@arl.wustl.edu

Abstract—Real-time systems on non-preemptive platforms re-
quire a means of bounding the execution time of programs
for admission purposes. Worst-Case Execution Time (WCET)
is most commonly used to bound program execution time. While
bounding a program’s WCET statically is possible, computing its
true WCET is difficult without significant semantic knowledge.
We present an algorithm for partial program admission, suited
for non-preemptive platforms, using dynamic programming to
perform explicit enumeration of program paths. Paths – possible
or not – are bounded by the available execution time and
admitted on a path-by-path basis without requiring semantic
knowledge of the program beyond its Control Flow Graph (CFG).

I. I NTRODUCTION

Admission control in real-time systems running on non-
preemptive platforms requires the ability to bound the ex-
ecution time of applications. In a trusted environment, a
single administrator can make an out-of-band determination
of execution boundedness. Untrusted, shared environments
are more difficult. As an example of such an environment,
consider network virtualization, which has been advanced as
a way to foster innovation in the Internet [1].

In network virtualization, core router platforms host 3rd-
party application code, running at Internet core speeds, al-
lowing the creation of high-speed overlay services [2]. These
platforms, of which the IXP 28XX is a representative example,
usually have no preemption mechanism suitable for use at high
speeds. Internet core speeds necessitate extremely tight cycle
budgets for packet processing. To share this type of system
among untrusted parties requires stringent admission control.

In other domains, instrumentation with runtime checks to
enforce proper behavior is a practical solutions. Unfortunately,
Internet core speeds render runtime checks impractical. At
5Gbps, an IXP 2800-based system with 1.4 GHz microengines
and 8 hardware thread contexts has a compute budget of 170
cycles. With such tight budgets, even a few runtime checks can
quickly push otherwise admissible program paths over budget.
A practical solution must therefore impose as little runtime
overhead as possible.

Worst-Case Execution Time (WCET) analysis is the cur-
rently accepted approach. A WCET bound can be established
statically, assuming that all program paths are viable. However,
some well behaved programs might be rejected. For example,
a program may have mutually exclusive code paths that, taken

together, exceed the cycle budget. Demonstrating that these
paths are mutually exclusive takes semantic knowledge, either
provided by the developer or deduced by analysis at admission
time. In most domains, this information is provided by the
developer as branch constraints. For our virtualization appli-
cation, we cannot trust the developer; any semantic knowledge
must come from the analysis.

We proposepartial program admission as a practical so-
lution to this problem. By explicitly examining all paths, we
can perform static analysis to re-write 3rd-party applications
to achieve the following goals:

1) all “safe” paths (paths that complete under budget) are
admitted,

2) no “unsafe” paths (paths that complete over budget, or
that do not complete) are admitted,

3) no runtime penalty is imposed on any safe path, and
4) no semantic knowledge is required.

To re-write the program, we actually duplicate some code
paths. While this causes some code expansion, or “bloat”, in
practical cases the bloat proves to be within acceptable limits.

Partial program admission seems at first glance to be a
useless process. It is uncommon for a developer to wish to run
only some fragment of a program. However, our construction
for partial program admission is not intended for running only
portions of a program, but for generating a new program where
the proof of execution time correctness is trivial.

WCET analysis depends upon developer knowledge of
branch constraints to eliminate paths that, while present in
the program, could never be taken. If the developer has met
the desired budget goals, all paths that can actually be taken
will be under budget. Only “impossible” paths are excluded.
In this way, we allow some code duplication to substitute for
detailed understanding of the program.

We also note that, during development, the program may not
be under budget. The same partial admission can also serve to
inform the developer of program paths that have unexpectedly
run over budget. We view this algorithm as a development tool
as well as an admission tool.

We present a theoretical construction that mirrors our al-
gorithm in Section II. In section III, we present our actual
algorithm, followed by proofs of correctness in Section IV.
We follow up with some preliminary performance data in



Section V, related work in Section VI, and our plans for future
work in Section VII.

II. A LGORITHM FOUNDATIONS

In this section we define the theoretical constructions on
which our algorithm is based. First, we describe the com-
putational model in which our solution works. Next, we
describe a series of graph transformations culminating in a
construction which meets our goals at the cost of significant
code duplication. Finally, we describe a means of reducing the
code duplication.

These constructions form the basis of an algorithm which
is functionally identical to, but intractably slower than,our
algorithm.

A. Computational Model

Our algorithm should be considered in the context of a
simplified processor. Our idealized processor has instructions
taking exactly one cycle to complete. All memory accesses
complete in one cycle. There is no pipeline. There is no
preemption.

Our computational model is event-driven, where code is
executed only in response to these events. For the network
virtualization application, the event is packet arrival.

Each block of code must complete within some number of
cycles, known at admission time. Cycles may not be “saved”
from one call to the next. The guarantee we must enforce is
that, from the time the code is called to the time the code
returns control, it consumes no more than the cycle count,
called thebudget.

Finally, we require the developer to add a “time-exceeded”
exception handler to her code. The exception handler is
required to adhere to strict coding guidelines which make static
analysis simple and easy.

The requirements of our model are sufficient, but not strictly
necessary. Our algorithm continues to work so long as at every
node we examine, we carry all of the information necessary to
determine the total execution time of every path beginning at
that node. For example, suppose we have a memory cache. The
execution time of subsequent instructions will depend upon
the contents of the cache, which can be derived from prior
instructions, memory layout, and the behavior of the cache.
Our model is chosen to simplify this information as much as
possible.

B. Path Enumeration

Our input to the algorithm consists of an assembly level
representation of the program. From this, we can develop
a Control Flow Graph (CFG) of the program, in which
outgoing edges are labeled by the execution time required
for the corresponding program segments. Our objective is
to derive a new CFG that executes the same sequence of
instructions for program executions that complete within a
specified time boundB, while terminating in an exception
handler for program executions that exceed the budgetB.

The conceptual starting point for this construction is the
creation of aControl Flow Tree (CFT) from the CFG. The

Fig. 1. CFG and the corresponding CFT. Weights along the edges represent
cycle counts to traverse that edge. Total path cycle counts are presented below
each terminal node in the execution tree.

CFT duplicates nodes in the CFG as necessary, in order to
convert the graph into a tree.

See Figure 1 for an example. NodesS and T are dummy
nodes used to delineate entry and exit points, and contain no
actual code. Similarly, in the CFT,T 1− T 4 are copies of the
dummy nodeT and contain no code.

Code generated from the CFT is functionally identical to the
original CFG. If the length of the path from the root node to a
nodeu in the tree exceedsB, then we can replace the subtree
rooted atu with an exception node, representing a jump to
the exception handling routine. As an additional step, if after
applying this step, the CFT contains a subtree whose leaves
are all exception nodes, we can replace the entire subtree with
an exception node.

This pruning procedure is illustrated on Figure 1. Let us
consider a budget of 10 cycles. While it would be valid to
execute the pathA → C → D2 → F2 → G4 before aborting
to the exception handler, it is clear that any execution path
reachingF2 will go over budget. Our earliest chance to raise
the exception is by intercepting the branch instruction atD2,
with the result shown in Figure 2.

We refer to the tree constructed in this way as theB-bounded
execution tree of the original control flow graph. We note that
such a tree can be defined relative to any nodeu in the CFG
and we letbxtB(u) (or generally, BXT) denote this execution
tree.

While one could generate a version of the original program
directly from the BXT, this typically results in an excessive
amount of code duplication. We can dramatically reduce the
amount of code duplication by merging equivalent subtrees of
the BXT in a systematic way.

C. Code Duplication Reduction

The BXT typically contains many subtrees that are identical
to one another and can be merged. To make this precise, we
define two nodesu1 and u2 in the BXT to beequivalent if
they were derived from the same nodeu in the original CFG



Fig. 2. Abort to exception handler

(that is, they represent copies of the same original program
segment). Two subtrees of the BXT are equivalent if they are
structurally identical and all of the corresponding node pairs
are equivalent. We can merge any pair of equivalent subtrees
without changing the set of executions, yielding abounded
execution graph (BXG) equivalent to the BXT. Conceptually,
the merging is performed in a top down fashion. That is, ifu1

andu2 are roots of equivalent subtrees, we merge them so long
as there are no ancestorsv1 of u1 andv2 of u2 that are also
roots of equivalent subtree. The merging process continues, as
long as there are equivalent subtrees that can be merged.

Returning to our example, nodesD1 and D2 cannot be
merged because their child execution trees are different.D1
has childrenE1 andF2; D2 has childrenE2 andX . However,
the subtrees rooted atE1 and E2 are identical. There is no
need to retain both trees. Instead, we can merge them into a
single subtree. Even further, the tree rooted atG2 is identical
to the subtrees rooted atG1 andG3. We can also merge the
G2 node with theG1/G3 node from theE1/E2 execution
tree. See Figure 3.

In contrast to the massive code duplication in the BXT, in
the BXG only one node (D) needed to be duplicated.

D. Intervals

While one can derive the BXG by explicitly constructing
the BXT and then merging nodes, there is a more efficient
dynamic programming procedure that can be used to construct
the BXG directly. This procedure is based on the observation
that the structure of a BXT subtree with root nodeu1 is
a function of just two things – the nodeu in the original
CFG from whichu1 was derived and the amount of available
execution time that remains after execution has reachedu1. If
the cost of the path from the root tou1 is p, then the remaining
execution time isB − p whereB is the overall bound. We
note that the BXT subtree with rootu1 is bxtB−p(u). So two
nodesu1 andu2 derived from the same CFG nodeu will have
identical subtrees if the costs of their paths from the root are
identical.

Fig. 3. Merging of equivalent execution subtrees

We can extend this notion to path costs that are “close.”
Given nodesu1 andu2 derived fromu, with path costs from
the root of p and q respectively, they will have identical
subtrees ifbxtB−p(u) = bxtB−q(u). This will be true for
values ofB−p andB−q that are “close enough” in a certain
sense.

For each nodeu in the original CFG, the dynamic pro-
gramming procedure produces a partition on the integers
corresponding to a partition on subtrees. Two valuesi and j
fall in the same equivalence class of the partition if and only
if bxti(u) = bxtj(u). Using these partitions, we can construct
the BXG directly from the CFG, without having to explicitly
construct the BXT.

As we prove in section IV, this partition of the integers falls
into contiguous ranges from a minimum value to a maximum
value, and including all values between. For our algorithm,we
refer to these partitions of the integers asintervals, and use
these as the basis for a memoization scheme.

III. T HE ALGORITHM

Before we formally present the algorithm there are several
preliminary details to define.

First, we assume that the code has already been read into
a CFG withS and T nodes.w(u) represents the cycle cost
to traverse nodeu, represented as an outgoing edge weight in
our CFGs.

We also assume that we have anINTERVAL data type. We
represent eachINTERVAL as a pair[a, b] wherea < b. Each
INTERVAL is treated as the set{x|a ≤ x ≤ b}, with the usual
definitions for intersection, subset, overlappingINTERVALS,
disjoint INTERVALS, and element predicate (∈). We define
scalar addition on anINTERVAL as [a, b] + x = [a + x, b + x].
Finally, we define thenull INTERVAL as the empty set.

Given theINTERVAL type, we define anINTERVAL search
object with two functions.

• INTERVAL function insert(vertex v, INTERVAL i)
Adds a tuple< v, i > to the search object; returns the
INTERVAL .



INTERVAL function bxg(integer R, vertex u)
INTERVAL i
i := find(u,R)
return if i 6= null → i

i = null and R < δ(u, T ) → insert(u,[−∞,δ(u,T)-1])
i = null and R ≥ δ(u, T ) and u = T → insert(u,[0,∞])
i = null and R ≥ δ(u, T ) and u 6= T

→ insert
(

u,
⋂

v∈child(u)

(

w(u,v)+bxg(v,R-w(u,v))
))

fi
end

Fig. 4. Pseudo-code of the algorithm (Tarjan notation)

• INTERVAL function find(vertex v, integer x)
Returns theINTERVAL associated with vertexv in which
x is found, ornull if no such INTERVAL exists.

Finally, we presume that we have pre-computed the shortest
paths from each node toT by Dijkstra’s algorithm or another
applicable shortest path method, and stored these values in
δ(v, T ).

A. The Algorithm

Our algorithm is a dynamically programmed, recursive ex-
ploration of all reachable vertex and interval tuples reachable
from the root,S. In pseudo-code, our algorithm is as shown
in Figure 4.

To construct the BXG for a CFG and budget B, we call
bxg(B,S). The BXG is built implicitly in the interval search
object; each insert operation adds a vertex to the CFG. Edges
are embodied in the constructed hierarchy ofINTERVALS. We
will refer to a BXG node asu[i, j] whereu is the node in the
original CFG, and[i, j] is an interval over which allbxtx(u)
are identical, as long asi ≤ x ≤ j.

To extract the BXG, we can walk through the interval search
object. For each interval we encounter where the lower limitis
not −∞, we emit the node; otherwise, we emit the exception
handler1. For each child of the node we emit, we create an
edge to the copy of the child with anINTERVAL that contains
the currentINTERVAL , adjusted by the connecting edge weight.
Thus, the nodeu[8, 9] with outgoing edge weight 2 might have
children v1[5, 7] and v2[6, 10] (both containing the interval
[8, 9]− 2 = [6, 7].)

B. Complexity

There are two types of complexity that matter for this
algorithm. First, we have thecomputational complexity of
the algorithm. Second, we have thespatial complexity of the
generated code.

This algorithm is intended for static analysis of program
code submitted for admission. The algorithm will run once
at admission time and then (if admitted) never again. Thus,
while we need the computational complexity to be feasible, we
consider spatial complexity to be the more important factor.

1Technically, we emit acall to the exception handler.

1) Computational Complexity: We can associate each re-
cursive call with an edge in the CFG. Let us examine the
algorithm in terms of the number of recursive calls per edge.

For us to insert a vertex-interval pair, we must reach the
vertex by a series of bxg calls. Since the remaining cycles
R is monotonically non-increasing from B, and we have at
most one negatively-lower-bounded interval at each vertex,
there are at mostO(B) intervals associated with each vertex.
We only make recursive bxg calls along outgoing edges on
the first failure to find an interval in the interval search object.
(Thereafter, the interval will be present.) Therefore, we can
make at mostO(B) recursive calls along each outgoing edge.

Next, let us examine the number of operations per recursive
call. We have two non-constant operations per call—a single
search of the interval search object, and a possible single insert
into the object. Both can easily be implemented asO(log B)
operations using a standard interval search tree associated with
each vertex [3].

By an aggregate analysis over edges, we haveO(mB)
recursive calls, usingm for the number of edges. Each
takesO(log B) time, for a total computational complexity of
O(mB log B).

2) Spatial Complexity: Spatial complexity of the emitted
code for a vertex in the CFG depends upon three factors: the
number of paths fromS to the vertex, the number of paths
from the vertex toT , and the budgetB.

At each vertex, we emit duplicated code corresponding to
each interval that is bothpresent andreachable from the source
S by paths of cost no more thanB.

Individual budget values at vertexu are divided into equiv-
alence classes by the weight of each path fromu to T . More
precisely, we have exactly one interval present for each path
from u to T of distinct cost, plus one for exceptions. Therefore,
the number of paths of distinct cost fromu to T forms an upper
bound on the number of intervals that may be present atu.

Each interval corresponds to some number of cycles remain-
ing at this point in the CFG. For an interval to be emitted, it
must bereachable: there must be a pathρ from S to that
vertex such thatB − w(ρ) is within the interval. Therefore,
the number of paths of distinct cost fromS to each vertex is
an upper bound on the number of emitted intervals.

As a direct consequence of this and the monotonically non-
increasing budget, the number of intervals we emit is upper-
bounded byB.

Thus, our spatial complexity is upper bounded by the
minimum of three factors: the number of paths toT , the
number of paths fromS, and the budgetB.

C. Natural Extensions

There are two natural extensions of this algorithm that bear
mention.

1) Variable Budgets: Our context of network virtualization
is event-driven by packet arrival. Performance guaranteesare
missed in the networking context when packets have arrived
at the inputs but are unable to be processed fast enough to
forward them to the output at line rate, resulting in output



Fig. 5. CFG modified for variable budgets

Fig. 6. Bounded execution flow graph (BXG) with variable budgets

underflow and queuing. If the problem is persistent, packets
will be lost. In the case of a shared processor, there is no way
to guarantee that discarded packets belong to the offending
code.

However, not all packets are the same size. Since a larger
packet will take more time at the output, we have more time
for processing. Fortunately, our model can be easily extended
to cope with this situation without changing the algorithm.

Let us take our example of Figure 1 and extend it to
handle packets of two sizes, with cycle budgets of 6 and 10
respectively. We can do this by adding code at the beginning
of the CFG to check the length of the packet and jump to the
appropriate starting point for this length.

See Figure 5. Here we have the modified CFG. Our new
start node,S, contains the code to check the packet length and
branch toS1 for short packets andS2 for the long packets.S1
andS2 do not actually generate code, but are entered into our
CFGas if they cost 4 and 0 cycles, respectively. To analyze the
CFG, we simply call bxt(S,10) as usual, resulting in Figure 6.
The algorithm is unaware that no long packets will reachS1,

but the semantic knowledge is unnecessary. It could serve to
reduce the code duplication, of course.

Variable budgets are not free. We do have a small constant
cost in the test-and-branch for budget selection. Since we
increase the number of early branches, this also serves to drive
up duplication of nodes. Nevertheless, for packet processing
this is a worthwhile investment.

2) Notify and Continue: We consider it worthwhile in our
problem context to consider a modification to the paradigm
of partial admission. We currently view the exception handler
as an abortion of the code block. However, we could use the
exception handler to register a notification that we went over
our budget, then continue execution.

This requires a modification to our algorithm. Presently,
our algorithm prunes away all subtrees that go over budget.
To notify and continue, we would need to return to the
flow of execution. To incorporate this notion, we would need
to modify the algorithm to add an outgoing edge from the
exception handler back to the node we pruned, with an
unbounded budget.

Using completely unbounded budgets also requires that our
algorithm be adjusted to deal with loops as a special case.
Because nodes that sit along paths containing cycles may have
an unbounded number of intervals, we would need to explicitly
recognize that an unbounded budget forms a special interval,
and to handle this separately.

IV. PROOFS OFCORRECTNESS

Our proofs of correctness proceed as follows. First, we
present a rigorous treatment of the constructions from CFG
to CFT, BXT, and BXG. Next, we prove the key properties
of the constructions. Finally, we demonstrate that our dynamic
programming algorithm creates our BXG and therefore has all
of our required properties.

A. Bounded Execution Subtrees

While it is conceptually clear to proceed from the CFG
to the CFT and thence to the BXT, this is mathematically
inconvenient. In the case of a cyclic CFG, the depth of the
corresponding CFT is unbounded. We prefer to work within
the domain of finite graphs. Therefore, we proceed directly
from the CFG to the BXT.

Given a CFGG = (V, E, s, t, w) where V is the set
of vertices,E is the set of directed edges connecting these
vertices,s is our source vertex,t is our sink vertex, andw is
a weight function over edges, we construct a BXTT from G
as follows.

Initialize T to have a single vertexr and assign
a labelλ(r) = s. For any nodeu of T , let p(u) be
the path fromr to u, and extend the weight function
w to paths in the natural way. Repeat the following
step as long as possible.

Select a leafu of T with λ(u) 6= t and
w(p(u)) ≤ B. Let v = λ(u) and let v1, . . . , vk

be the successors ofv in G. Add nodesu1, . . . , uk



to T with edges(u, ui) and let λ(ui) = vi and
w(u, ui) = w(v, vi).

This intermediate construction is the CFT up to and just over
the budget frontier. That is, we continue to build on our paths
until all leavesu (and only leaves) are either over budget or
correspond tot. We convert this to our BXT by the following
pruning steps.

For all nodesu in T with pathρ = r ; u and
w(ρ) > B, let λ(u) = X , whereX is a new label
denoting “exception.”

Call a subtree ofT open if it contains a nodeu
with λ(u) = t. Otherwise call it closed. For every
node that is the root of a closed subtree and whose
parent is not, prune the subtree and letλ(u) = X .

The treeT obtained in this way is calledbxtB(s). Since
the construction can be applied equally well to any nodeu in
G with any non-negative budgetB, we can also usebxtB(u)
to refer to any subtree of the BXT rooted atu, so long as we
adjust the budgetB appropriately.

The bxtB(s) has four important characteristics: complete-
ness, boundedness, termination, and equivalent functionality.

Theorem 1 (Completeness). If G = (V, E, s, t, w) is a CFG
and T = bxtB(s) is the corresponding BXT, then all paths
s ; t with cost less thanB have corresponding paths inT .

Proof: Suppose there were a pathρ in the CFG with
w(ρ) ≤ B but no corresponding path inT . Without
loss of generality, letρ be the shortest such path, and let
ρ = s ; u → v. Thenσ = s ; u must be inT . However,
we have an available construction step from nodeu, so our
construction was incomplete. Thus,T cannot bebxtB(s).

Theorem 2 (Boundedness). If G = (V, E, s, t, w) is a CFG
andT = bxtB(s) is the corresponding BXT, then no path in
T has cost greater thanB.

Proof: Suppose there were a pathρ in T with w(ρ) > B.
Without loss of generality, letρ be the shortest such path,
and letρ = s ; u. If u has no descendantsv with λ(v) = t,
then the subtree rooted atu is closed and should have been
pruned during the pruning phase. Alternatively, supposeu does
have descendantv with λ(v) = t. Because path costs are
monotonically non-decreasing, we know that the cost fromr
to v also exceedsB. Then it should have been relabeled to
λ(v) = X during the relabeling phase of the pruning step. In
either case,T could not have beenbxtB(s).

Theorem 3 (Termination). If G = (V, E, s, t, w) is a CFG
andT = bxtB(s) is the corresponding BXT, then all paths in
G that exceed the budgetB have a corresponding truncated
subpath inT terminating at exception node X.

Proof: From the construction, we know that construction
continues until for all leavesu eitherλ(u) = t or p(u) > B.
Thus, for each path inG that exceeds the budgetB, there
is a corresponding subpath inT that runs beyond the budget
frontier.

During the relabeling step of the pruning stage, all nodesu
over the budget are relabeled toλ(u) = X . Since these are all
leaf nodes, they represent the roots of closed subtrees. Since
the pruning stage can never open a subtree once closed, the
corresponding truncated subpath will always terminate in an
exception, although it may be further truncated.

Theorem 4 (Equivalent Functionality). If G = (V, E, s, t, w)
is a CFG andT = bxtB(s) is the corresponding BXT, then all
pathsr ; u in T with λ(u) 6= X have labels that correspond
directly to paths inG.

Proof: By our construction, no path entersT without
coming from a corresponding path inG, and labels are retained
pointing back to the original nodes inG. Since the pruning
phase only relabels toX , and completes with only leaf nodes
relabeled, all labels on safe subpaths inT are retained.

We can useT to create a program that is functionally
equivalent to the parts ofG that stay under budget but which
is guaranteed to finish within budget (either att or atX). For
each vertexu in T , we generate code equivalent toλ(u) from
the original CFG. E.g., see figure 2.

B. Bounded Execution Flow Graphs

The BXT construction repeats many code segment unneces-
sarily. We can generate a more compact program by merging
identical subtrees inT to produce a new CFG, theBounded
Execution Flow Graph, bxgB(s), or BXG.

We first define our notion of equivalent subtrees. LetT be
a bxtB(s) of some CFG. Let there be two nodesu andv in
T with children u1, . . . , ui and v1, . . . , vj , respectively. We
consider the subtrees rooted atu andv to be identical when
λ(u) = λ(v) and all subtrees rooted at corresponding children
are also identical.

We begin creating our BXGG from T by copying T
completely. Next, we repeat the following step as long as
possible.

Select nodesu andv from G where the subtrees
rooted atu and v are equivalent and their parent
nodes are not. Merge these subtrees as follows.

Prunev and all descendant nodes fromG. For
each node we prune, if there is a parent not in the
subtree, replace the incoming edge with an edge to
the corresponding node inu.

This construction retains all four properties of the BXT,
Completeness, Boundedness, Termination, and Equivalent
Functionality. Since each property relies upon the (downward)
structure of the subtree rooted at each node, and these struc-
tures have not changed, no properties have been lost.

In the case of Completeness, no subtrees have been pruned
without re-pointing the incoming edges at an equivalent sub-
tree. This applies to all paths, not just paths under budget.

In the case of Boundedness, no paths have been lengthened
(or shortened). Thus, ifT were properly bounded, so isG.

In the case of Termination, no paths have been lengthened
and no nodes have been relabeled.



For Equivalent Functionality, the equivalence property of
subtrees depends upon identical labels.

C. Correspondence to Algorithm

Proving that our algorithm corresponds to this construction
requires demonstrating several properties of our intervals.

1) Intervals: We prove two properties of intervals to assist
in proving that the algorithm corresponds to the BXG con-
struction.

Theorem 5. Given a BXTT generated from CFGG, consider
two nodesu and v in T with λ(u) = λ(v) and identical
subtrees. Letp(u) be the path from the rootr to u andp(v)
be the path from rootr to v. Let i = B − w(p(u)) and j =
B −w(p(v)) be the remaining cycles atu andv, and assume
without loss of generality thati ≤ j. If there is a third node
z with λ(z) = λ(u), path p(z) from root r to z, and i ≤
B−w(p(z)) ≤ j then the subtree rooted atz is also identical.

Proof: Consider the (unbounded) CFT we could generate
from any nodeu in T , consisting of the collective enumera-
tions of the (possibly infinite number of) paths fromλ(u) to t
in G. For each pathρi there is a corresponding weightw(ρi).
This weight does not depend on the incoming budget tou of
Bu = B − w(p(u)).

We can order these paths asρ1, . . . , ρk where w(ρ1) ≤
· · · ≤ w(ρk). If we reduce the incoming budgetBu of
bxtBu

(u), we will be forced to relabel and prune those leaves
where Bu − w(ρi) < 0. Since our path weights and the
ordering are independent of the incoming budgetBu, if we
relabel and pruneρi then we will also relabel and prune all
pathsρj with weight w(ρi) ≤ w(ρj).

Now, givenu, v known to be the roots of identical subtrees
with corresponding cycles remainingi = B − w(p(u)) and
j = B − w(p(v)), i ≤ j, we know that the leaves of
these subtrees have identical labels. Suppose there were some
subtree rooted atz with i ≤ B − w(p(z)) ≤ j and subtree
differing from the one rooted atu. Since we know that
decreasing the available cycles can never admit additional
paths, andw(p(u)) ≥ w(p(z)), we know that the subtree
rooted atu has fewer paths to the sink under budget.

Let us consider these subtrees after relabeling, but before
pruning of closed subtrees. To differ from the subtree rooted
at u, the subtree rooted atz must have some leaf at the end of
a pathρk with a label differing from the corresponding leaf
in the subtree rooted atu whereB − w(p(z)) − w(ρk) ≥ 0
but B − i − w(ρk) < 0. But becauseB − w(p(z)) ≤ j, if
B−w(p(z))−w(ρk) ≥ 0 thenB−j−w(ρk) ≥ 0 as well. This
implies thatu 6= v, contradicting our original assumptions.

Consequently, for each nodeu the integers from0 to B can
be divided into subranges such thati and j are in the same
subrange if and only ifbxti(u) = bxtj(u). We can represent
these subranges as intervals[i, j] wherei ≤ j.

For each budgetB and nodeu, there exists a maximal
interval [i, j] such that there is no valuek not within this
interval wherebxti(u) = bxtk(u) = bxtj(u).

Theorem 6. Given a budgetBu = B − w(p(u)), a nodeu
with λ(u) 6= t andk childrenu1, . . . , uk and known maximal
intervals for each child as[i1, j1], . . . , [ik, jk] such that for
eachxth child, B − w(u, ux) ∈ [ix, jx], we can compute
the corresponding maximal interval for the parent nodeu as
the intersection of the child intervals, each shifted upward by
w(u, ux). That is:

[iu, ju] =

k
⋂

x=1

([ix, jx] + w(u, ux)) (1)

is the maximal interval atu containingBu.

Proof: We use the same construction as in Theorem 5.
There are paths fromλ(u) to t in G. However, these paths
consist of the union of all paths fromλ(ux) to t in G with
λ(u) prepended. Let us denote the paths fromux to our sink
asρxy. Thus, given the weight of pathsρxy for ux asw(ρxy),
the weight of the corresponding paths fromu arew(u, ux) +
w(ρxy). This accounts for the upward shift byw(u, ux).

Also as in Theorem 5, these paths can be ordered indepen-
dently of Bu. Given interval[ix, jx] for child ux, we know
that these limits represent the budget points where for some
y, B − w(p(ux)) − w(ρxy) changes sign. (Increasing beyond
jx will cause a negative valueB − w(p(ux)) − w(ρxy) to
become zero; decreasing belowix will cause a positive value
B − w(p(ux)) − w(ρxy) to become negative.)

Since we are given that the upwardly shifted intervals are
overlapping, we know that there is some valueBu contained
within each shifted interval. That is,Bu ∈ [ix, jx] + w(u, ux)
for all x. If we sort the pathsρxy in weight order, there will
be some smallest value greater thanBu selected from the
jx + w(u, ux) values, and some greatest value less thanBu

selected from theix+w(u, ux) values. These are the endpoints
where the most sensitive path changes state. This is the very
definition of interval intersection.

Finally, by definition, the intervals for nodeu with λ(u) = t
are[−∞,−1] and[0,∞]. That is, we completed under budget
if we reachedt without going negative on cycles.

Using these maximal intervals, we can merge all subtrees
with remaining budgetsB within the same interval.

2) Algorithmic Correctness:

Theorem 7 (Algorithm computes maximal intervals). Given
a CFG G = (V, E, s, t, w) and budgetB, our algorithm
generates only maximal intervals.

Proof: Given nodeu and remaining budgetR, our algo-
rithm first looks to see if we already have nodeu[i, j] such
that R ∈ [i, j]. This is our dynamic programming step and
exists only for optimization. We may ignore it in our proof.

Next, we check to see if we’re over budget (pruning step).
Suppose we will exceed our budget. The pre-computed short-
est path values allow us to immediately compute the maximal
interval without examining the children. First, we know that
the subtree rooted atu is closed, as all paths to the sink are
longer than our remaining budgetR. A closed subtree has an
interval unbounded on the left. Finally, we have the shortest



0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

P
er

ce
nt

ag
e

of
C

F
G

s

Maximum Duplication Required (Normalized)

Code Duplication Distribution

Fig. 7. Percentage of synthetic CFGs requiring more than X duplication
(from run of 1000 synthetic CFGs)

path weightδ(u, T ), which tells us at what value ofR the
first path becomes admissible. This provides the upper bound
on the maximal interval.

Suppose we’re not over budget. We also check the basis
step of our recursive definition in Equation 1. If we match the
sink (λ(u) = t), we can compute the result directly from the
basis.

Finally, if we don’t have a shortcut, we follow Equation 1.
Since our pruning step computes maximal intervals directly,

and our basis step does the same, all we have left is our
recursive step. By Theorem 6, this also computes the maximal
interval for u.

Therefore, all intervals computed will be maximal.

Theorem 8 (Algorithm computes only necessary intervals).
Given a CFGG = (V, E, s, t, w) and budgetB, our algorithm
only computes intervals reachable from the source within our
budget.

Proof: Our algorithm proceeds in depth-first search from
s, and therefore only visits those vertices reachable froms.
Since the cycles remaining is decremented appropriately at
each recursive call, we also only investigate those intervals
we can actually reach.

Theorem 9 (Algorithm Correctness). Given a CFGG =
(V, E, s, t, w) and budgetB, our algorithm generatesbxgB(s).

Proof: Follows automatically from Theorems 7 and 8.

V. PERFORMANCE

We have implemented this algorithm and tested it on a
variety of CFGs and budgets.

A. Synthetic CFGs

Our synthetic CFGs were generated by a series of vertex
substitutions that parallel grammar production rules in a C-like
language. For our acyclic CFGs, we include simple statements,
if, if-then-else, and switch/case statements. For our cyclic

0

50

100

150

200

250

300

0 20 40 60 80 100 120 140 160

In
st

ru
ct

io
ns

Budget (cycles)

IPv4 Header Format

Fig. 8. Code duplication on real CFG (IP Header Format)

CFGs, we addedwhile, do/while, andfor loops. In both cases,
the typical size of the synthetic input CFG was roughly double
the size of the largest packet processing code block we have
seen in our router virtualization efforts, and quadruple the
target size for a typical code block.

Examine Figure 7. This represents the results of running the
algorithm on 1000 different acyclic synthetic CFGs. We show
the resulting distribution of the maximum code duplicationfac-
tor required for each synthetic CFG over all possible budgets.
The vast majority (82%) require a maximum duplication factor
from 1–2, with an average maximum of 1.6. Large duplication
factors are actually very rare; one pathological case required a
duplication factor of 23.5. Subsequent analysis of this example
showed that it was composed almost exclusively of a series of
nestedswitch/case statements.

The results on cyclic CFGs are uninteresting and omitted.
While the algorithm works on cyclic CFGs, it works by
implicitly unrolling the loop to the limit of the budget. Thus,
the code duplication factor is bounded only by the budget. As
expected, in simulation the code duplication factor for cyclic
graphs is linear in the budget.

B. Real CFG: IPv4 Header Rewriting

For a real CFG, we used the code that rewrites the IPv4
header for next-hop forwarding. This consists of 180 instruc-
tions, designed to run at over 5 Gbps on our virtualized router.

See Figure 8. The real CFG necessitated some minor
modification to the algorithm to deal with pipeline stalls due
to unfilled deferral slots.

At very small budgets, the algorithm actually generatesless
code than the original CFG. This is due to pruning when
the budget is too low for this code block. That is, so many
paths are pruned that many vertices are never emitted at all.
For most application code, this represents a serious developer
error and would be reported as such. It is simple for our
algorithm to report when certain paths are never admitted, and
we implemented this in our experimental version.



Above 108 cycles, we reach the maximum length path
of the CFG. At this point, all paths are admissible and no
duplication is necessary. The original CFG is accepted with
no modification.

A suitable budget for 5 Gbps would be 170 cycles. Clearly,
we are under 170. For 10 Gbps we need 85 cycles. The IPv4
header format code is not currently able to achieve 10 Gbps,
as the chart makes obvious. Even worse, 85 cycles is the peak
of our code duplication, at 296 instructions. This still yields a
duplication factor of only 1.64, well in line with our synthetic
cases.

VI. RELATED WORK

The major competing technology is WCET analysis using
mixed integer programming [4]. This differs from our work
in that it makes no effort to solve the code emission problem,
and requires that we trust the developer to provide semantic
information on branch constraints.

Our problem is different. We need to accept and handle
untrusted code in a shared environment. Thus, we must derive
any semantic information from the program, not the developer.
In the absence of programmer specific semantic information,
we can re-write programs to create provably safe CFGs via
code duplication.

We also note that the decision to use integer programming
to solve the WCET problem was because the developers
considered explicit path enumeration infeasible. This fails to
consider the possibilities of dynamic programming.

for (i=0; i<100; i++) {
if (rand() > 0.5) j++;
else k++;

}
Fig. 9. “Difficult” WCET analysis for explicit path enumeration

Consider the code snippet in Figure 9. The argument is that
this snippet contains2100 possible paths, and that to enumerate
them all is simply impractical. However, using a dynamic
programming approach with loop bounds, we can determine
WCET for this snippet in linear time.

Another approach which bears discussion isProof Carrying
Code [5]. In this approach, the developer generates a proof of
the correctness of the block of code which can be validated
automatically at load time. This approach could be very
promising for our problem context. However, it places the bur-
den of generating this proof squarely on the shoulders of the
developer. We prefer to allow the developer as much freedom
as possible, and generate our own proofs of correctness.

VII. F UTURE WORK

Our current implementation of the algorithm does not yet
perform emission, nor does it incorporate a parser to accept
real-world code. This is our current developmental priority,
and requires addressing a number of “real-world” issues we
neglect in our theoretical version.

A. Real World Details

First, we have neglected the problem of control flow
fallthrough. When a branch is reached, we can re-write the
target address. The other side of the branch will simply fall
straight through. In consequence, only one block can fall
through to another block. To have multiple blocks fall through
to the same target requires additional changes.

For cases where paths are not close to budget values, we can
simply insert a jump instruction. When this is not practical, we
can continue to duplicate code until we reach a point where
we can merge the paths. For the IXP architecture, this is likely
to be soon—a vacant pipeline deferral slot provides the single
slack cycle we need.

Next, the IXP architecture supports asynchronous memory
access to allow developers to hide memory latencies. In
practical development, both a compute budget and a memory
latency budget must be maintained and respected. Adding this
functionality to the algorithm appears to be straight-forward,
but the impact on code duplication must be examined.

The IXP is a heavily multithreaded environment. In our
studies, we have only considered applications with no inter-
thread dependencies in packet processing. Higher, trusted
layers ensure in-order packet forwarding, but processing code
has never required inter-thread dependencies. This assumption
is naive and needs to be examined. It may be possible to
construct a multi-threaded model of our CFG, analogous to
the work with WCET analysis in [6].

Finally, this algorithm only applies to CFGs. A function
call has no place in a CFG. Most heavily optimized, high-
speed networking code inlines all functions for speed. In these
cases, the code represents a CFG. However, for code that does
not inline, we have control flow that cannot adequately be
represented in a CFG. One approach would be to implicitly
inline the function calls and analyze normally; then use a new
merge rule to combine inlined function code when possible.

B. Improvements

We have also identified additional ways to reduce duplica-
tion. One immediate gain can be made by noting duplicated
paths that contain no safe paths “close” to the budget. We
can merge these paths by adding runtime checks that lengthen
safe paths but do not actually push them over the budget. One
possible way to reduce the expense of the runtime check is
inspired by Ball and Larus [7], who developed single-counter
methods for tracking execution paths through a CFG and
applied those to optimize the “hot” paths. In our work, we
are interested in using the same techniques to differentiate
safe vs. unsafe paths.

Much greater gains can be made by extracting semantic
information from the code itself. If we have complete semantic
information, we can avoid path enumeration for impossible
paths in the CFG. The problem becomes a limited, finite form
of the Halting Problem: does this code, when started with any
of the possible inputs, halt withinB cycles? Any finite form
of the Halting Problem is decidable.



We believe that a data flow framework solution is appropri-
ate. With explicit path enumeration, we can solve the constant
propagation problem to completion over branch conditions.
This would allow us to deduce loop iteration bounds, mutually
exclusive paths, and even unreachable code.

We consider this the most important area for additional
study. The current state of the algorithm allows duplication to
stand in lieu of semantic knowledge. Code that is semantically
safe but unsafe in the CFG can be admitted by rewriting the
code to guarantee that the unsafe but semantically impossible
paths are never taken. With a complete semantic analysis, we
would never need to strip those paths, and our code duplication
would be reserved for those cases where a genuinely unsafe
path is included.

In our application of event-driven, tight budget real-time
guarantees, this line of research is very promising. The number
of input values to examine is limited by the paucity of available
cycles for reading data from memory. We know that our
constant propagation will never need to deal with more than a
few dozen values, because any code that examines more than
this will be over budget due to memory latencies.

VIII. C ONCLUSION

In this paper, we have introduced a new technique for par-
tial program admission. We have demonstrated that dynamic
programming can be used to render explicit path enumeration
eminently feasible. The same construction can be used to emit
a modified CFG that meets event-drive real-time guarantees.

This method shows great promise in the realm of network
virtualization. Other applications in similar fields may be
equally promising.

REFERENCES

[1] J. Turner and D. Taylor, “Diversifying the internet,” inIEEE Globecom
2005, St. Louis, MO, Nov. 2005.

[2] J. Turner and N. McKeown, “Can overlay hosting services make ip
ossification irrelevant?” inProc. PRESTO: Workshop on Programmable
Routers for the Extensible Services of TOmorrow, May 2007.

[3] T. Cormen, C. Leiserson, R. Rivest, and C. Stein,Introduction to
Algorithms. Boston, MA: MIT Press and McGraw-Hill, 2001.

[4] Y.-T. S. Li and S. Malik, “Performance analysis of embedded software
using implicit path enumeration,”SIGPLAN Not., vol. 30, no. 11, pp.
88–98, 1995.

[5] G. C. Necula, “Proof-carrying code,” inConference Record of POPL ’97:
The 24th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, Paris, France, jan 1997, pp. 106–119. [Online].
Available: citeseer.ist.psu.edu/article/necula97proofcarrying.html

[6] P. Crowley and J. Baer, “Worst-case performance estimation for hardware-
assisted multi-threaded processors,” inProc. HPCA-9 Workshop on Net-
work Processors, 2003.

[7] T. Ball and J. R. Larus, “Efficient path profiling,” inMICRO 29:
Proceedings of the 29th annual ACM/IEEE international symposium on
Microarchitecture. Washington, DC, USA: IEEE Computer Society,
1996, pp. 46–57.


	DepartmentName: Department of Computer Science & Engineering
	ReportNumber: 2008-4
	Date: March 10, 2008
	Email: Corresponding Author: mlw2@arl.wustl.edu
	Notes: 
	Footer1: Department of Computer Science & Engineering - Washington University in St. Louis
	Footer2: Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160
	Abstract: Abstract: Real-time systems on non-preemptive platforms require a means of bounding the execution time of programs for admission purposes.  Worst-Case Execution Time (WCET) is most commonly used to bound program execution time. While bounding a program's WCET statically is possible, computing its true WCET is difficult without significant semantic knowledge.  We present an algorithm for partial program admission, suited for non-preemptive platforms, using dynamic programming to perform explicit enumeration of program paths. Paths - possible or not - are bounded by the available execution time and admitted on a path-by-path basis without requiring semantic knowledge of the program beyond its Control Flow Graph (CFG).
	Title: Partial Program Admission by Path Enumeration
	Author: Authors: Michael Wilson, Ron Cytron, Jon Turner


