
1

Strong Performance Guarantees for
Asynchronous Buffered Crossbar Schedulers

Jonathan Turner

Abstract—Crossbar-based switches are commonly used to im-
plement routers with throughputs up to about 1 Tb/s. The advent
of crossbar scheduling algorithms that provide strong perfor-
mance guarantees now makes it possible to engineer systems
that perform well, even under extreme traffic conditions. Until
recently, such performance guarantees have only been developed
for crossbars that switch cells rather than variable length packets.
Cell-based crossbars incur a worst-case bandwidth penalty of up
to a factor of two, since they must fragment variable length
packets into fixed length cells. In addition, schedulers for cell-
based crossbars may fail to deliver the expected performance
guarantees when used in routers that forward packets. We show
how to obtain performance guarantees for asynchronous cross-
bars that are directly comparable to those previously developed
for synchronous, cell-based crossbars. In particular we define
derivatives of the Group by Virtual Output Queue (GVOQ)
scheduler of Chuang et al. and the Least Occupied Output First
Scheduler of Krishna et al. and show that both can provide strong
performance guarantees in systems with speedup 2. Specifically,
we show that these schedulers are work-conserving and that
they can emulate an output-queued switch using any queueing
discipline in the class of restricted Push-In, First-Out queueing
disciplines. We also show that there are schedulers for segment-
based crossbars, (introduced recently by Katevenis and Passas)
that can deliver strong performance guarantees with small buffer
requirements and no bandwidth fragmentation.

I. INTRODUCTION

Crossbar switches have long been a popular choice for trans-
ferring data from inputs to outputs in mid-range performance
switches and routers [1]. Unlike bus-based switches, crossbars
can provide throughputs approaching 1 Tb/s, while allowing
individual line cards to operate at speeds comparable to the
external links.

However the control of high performance crossbars is
challenging, requiring crossbar schedulers that match inputs
to outputs in the time it takes for a minimum length packet
to be forwarded. The matching selected by the scheduler has
a major influence on system performance, placing a premium
on algorithms that can produce high quality matchings in a
very short period of time.

Traditionally, crossbars schedulers have been evaluated
largely on the basis of how they perform on random traffic
arrival patterns that do not cause long term overloads at inputs
or outputs. Most often, such evaluations have been carried out
using simulation [14]. Recently, there has been a growing body
of work providing rigorous performance guarantees for such
systems [11], [15] in the context of well-behaved, random traf-
fic. A separate thread of research concentrates on schedulers

This work was supported by the National Science Foundation (award
#0325291). Any opinions, findings and conclusions or recomendations ex-
pressed in this material are those of the author and do not necessarily reflect
the views of the National Science Foundation.

that can provide strong performance guarantees that apply to
arbitrary traffic patterns [3], [8], [18], including adversarial
traffic that may overload some outputs for extended periods of
time. The work reported here belongs to this second category.
Since the internet lacks comprehensive mechanisms to manage
traffic, extreme traffic conditions can occur in the internet
due to link failures, route changes or simply unusual traffic
conditions. For these reasons, we argue that it is important
to understand how systems perform when they are subjected
to such extreme conditions. Moreover, we argue that strong
performance guarantees are desirable in backbone routers, if
they can be obtained at an acceptable cost.

There are two fundamental properties that are commonly
used to evaluate crossbar schedulers in this worst-case sense.
A scheduler is said to be work-conserving if an output link is
kept busy so long as there are packets addressed to the output,
anywhere in the system. A scheduler is said to be order-
preserving if it is work-conserving and it always forwards
packets in the order in which they arrived. A crossbar with
an order-preserving scheduler faithfully emulates an ideal
nonblocking switch with FIFO output queues. In their seminal
paper, Chuang, et al. provided the first example of an order-
preserving scheduler [3] for a crossbar with small speedup,
where the speedup of a crossbar switch is the ratio of its ideal
throughput to the total capacity of its external links. So a
crossbar with a speedup of S has the potential to forward
data S times faster than the input links can supply it. In
fact, Chuang, et al. showed a stronger property; that certain
schedulers can be specialized to emulate an output queued
switch that implements any one of a large class of scheduling
algorithms at the outputs.

Until recently, strong performance guarantees have been
available only for crossbars that forward fixed length cells.
There is a sound practical justification for concentrating on
such systems, since routers commonly use cell-based cross-
bars. Variable length packets are received at input line cards,
segmented into fixed length cells for transmission through
the crossbar and reassembled at the output line cards. This
simplifies the implementation of the crossbar and allows for
synchronous operation, which allows the scheduler to make
better decisions than would be possible with asynchronous
operation. Unfortunately, cell-based crossbar schedulers that
deliver strong performance guarantees when viewed from the
edge of the crossbar, can fail to deliver those guarantees for
the router as a whole. For example, a system using a work-
conserving cell-based scheduler can fail to keep an outgoing
link busy, even when there are complete packets for that output
present in the system.

We show that strong performance guarantees can be pro-

vided for packets, using asynchronous crossbars that directly
handle packets, rather than cells, if the crossbars are equipped
with a moderate amount of internal buffer space. Specifically,
we define packet-oriented derivatives of the Group by Vir-
tual Output Queue algorithm (GVOQ) of [3] and the Least
Occupied Output First Algorithm (LOOFA) of [8], [18] and
show that they can deliver strong performance guarantees for
systems with a speedup of 2. Because our crossbar schedulers
operate asynchronously, we have had to develop new methods
for analyzing their performance. These methods now make it
possible to evaluate asynchronous crossbars in a way that is
directly comparable to synchronous crossbars.

The use of buffered crossbars is not new. An early ATM
switch from Fujitsu used buffered crossbars, for example [17].
However, most systems use unbuffered crossbars, because the
addition of buffers to each of the n2 crosspoints in an n× n
crossbar has been viewed as prohibitively expensive. There has
recently been renewed interest in buffered crossbars [4], [6],
[9], [10], [12], [16], [19], [20]. A recent paper by Chuang et
al. [4] advocates the use of buffers in cell-based crossbars in
order to reduce the complexity of the scheduling algorithms.
The authors argue that ongoing improvements in electronics
now make it feasible to add buffering to a crossbar, without
requiring an increase in the number of integrated circuit
components. Hence, the cost impact of adding buffering is
no longer a serious obstacle. Our results add further weight
to the case for buffered crossbars, as the use of buffering
allows inputs and outputs to operate independently and asyn-
chronously, allowing variable length packets to be handled
directly. Katevenis et al [9], [10] have also advocated the
use of buffered crossbars for variable length packets and
have demonstrated their feasibility by implementing a 32 port
buffered crossbar with 2 KB buffers at each crosspoint.

Section 2 discusses the differences between switching cells
and switching packets, and explains how buffered crossbars
are particularly advantageous for systems that directly switch
packets. Section 3 defines the terminology and notation used in
the analysis to follow. Section 4 collects several key lemmas
that are used repeatedly in the analysis. Section 5 presents
strong performance guarantees for a packet variant of the
Group by Virtual Output Queue crossbar scheduler. Section 6
presents a similar set of guarantees for a packet variant of the
Least Occupied Output First scheduler. Section 7 explains how
our asynchronous crossbar scheduling algorithms can be used
in systems that switch variable length segments rather than
cells, reducing the amount of memory required by crossbar
buffers by more than order of magnitude. Finally, section
8 provides some closing remarks, including a discussion of
several ways this work can be extended.

II. SWITCHING PACKETS VS. CELLS

As noted in the introduction, most crossbar-based routers,
segment packets into cells at input line cards, before forward-
ing them through the crossbar to output line cards, where
they are reassembled into packets. This enables synchronous
operation, allowing the crossbar scheduler to make decisions
involving all inputs and outputs at one time.

Virtual
Output
Queues

Output Queues

Crosspoint
Buffers

Fig. 1. Buffered Crossbar

Unfortunately, cell-based crossbars have some drawbacks.
One is simply the added complication of segmentation and
reassembly. More seriously, the segmentation of packets into
cells can lead to degraded performance if the incoming packets
cannot be efficiently packed into fixed length cells. In the
worst-case, arriving packets may be slightly too large to fit
into a single cell, forcing the input line cards to forward them
in two cells. This effectively doubles the bandwidth that the
crossbar requires in order to handle worst-case traffic. While
one can reduce the impact of this problem by allowing parts
of more than one packet to occupy the same cell, this adds
complexity and does nothing to improve performance in the
worst-case.

In addition, crossbar schedulers that operate on cells, with-
out regard to packet boundaries, can fail to deliver the expected
guarantees from the perspective of the system as a whole. In
a system that uses a cell-based crossbar scheduler, an output
line card can typically begin transmission of a packet on its
outgoing link only after all cells of the packet have been
received. Consider a scenario in which n input line cards
receive packets of length L at time t, all addressed to the same
output. If the length of the cell used by the crossbar is C, each
packet must be segmented into dL/Ce cells for transmission
through the fabric. A crossbar scheduler that operates on cells
has no reason to prefer one input over another. Assuming that
it forwards cells from each input in a fair fashion, at least
n (dL/Ce − 1) cells must pass through the crossbar before
the output line card has a complete packet that it can forward
on the output link. While some delay between the arrival of a
packet and its transmission on the output link is unavoidable,
delays that are substantially longer than the time it takes to
receive a packet on the link are clearly undesirable. In this
situation, the delay is about n times larger than the time taken
for the packet to be received. Interestingly, one can obtain
strong performance guarantees for packets using cell-based
schedulers that are packet-aware. We discuss this in Section
7.

There are a few previous studies of the performance of
bufferless crossbars that switch packets, rather than cells.

2

References [5], [13] focus on performance for well-behaved
random traffic, so are not directly comparable to the results
presented here. On the other hand, [2] studies packet-mode
emulation of unbuffered crossbars and shows that strong
performance guarantees can be obtained for such systems.
However, the frame-based scheduling methods used in [2]
impose a delay that can be several orders of magnitude larger
than the very modest delays imposed by the schedulers studied
here.

Asynchronous crossbars offer an alternative to cell-based
crossbars. They eliminate the need for segmentation and
reassembly and are not subject to bandwidth fragmentation,
allowing one to halve the worst-case bandwidth required by
the crossbar. Unfortunately, there is no obvious way to obtain
strong performance guarantees for unbuffered asynchronous
crossbars, since the ability of the scheduler to coordinate the
movement of traffic through the system, seems to depend on
its ability to make decisions involving all inputs and outputs at
one time. A scheduler that operates on packets must deal with
the asynchronous nature of packet arrivals, and must schedule
packets as they arrive and as the inputs and outputs of the
crossbar become available. In particular, if a given input line
card finishes sending a packet to the crossbar at time t, it
must then select a new packet to send to the crossbar. It may
have packets that it can send to several different outputs, but
its choice of output is necessarily limited to those outputs that
are not currently receiving packets from other inputs. This can
prevent it from choosing the output that it would prefer, were
its choices not so constrained. One can conceivably ameliorate
this situation by allowing an input to select an output that will
become available in the near future, but this adds complication
and sacrifices some of the crossbar bandwidth. Moreover, it is
not clear that such a strategy can lead to a scheduling algorithm
with good worst-case performance and small speedup.

The use of buffered crossbars offers a way out of this
dilemma. The addition of buffers to each crosspoint of an n×n
crossbar effectively decouples inputs from outputs, enabling
the asynchronous operation that variable length packets seem
to require. A diagram of a system using a buffered crossbar is
shown in Figure 1. In addition to the now conventional Virtual
Output Queues (VOQ) at each input, a buffered crossbar has
a small buffer at each of its crosspoints. As pointed out in [4],
the buffers allow inputs and outputs to operate independently,
enabling the use of simpler crossbar scheduling mechanisms,
but the buffers have an even greater import for asynchronous
crossbars. With buffers, whenever an input finishes sending
a packet to the crossbar, it can select a packet from one of
its VOQs, so long as the corresponding crosspoint buffer has
room for the packet. We show that crosspoint buffers of modest
size are sufficient to allow strong performance guarantees with
the same speedup required by cell-based schedulers.

III. PRELIMINARIES

To start, we introduce common notations that will be used
in the analysis to follow. We say a packet x is an ij-packet if
it arrived at input i and is to be forwarded on output j. We
let s(x) denote the time at which the first bit of x is received

Lij

sij fij τij

<LM /S

βij

=0 or ≥Lij /S

Fig. 2. Basic Definitions for Active Periods

on an input link and we let f(x) be the time at which the
last bit is received. We let L(x) denote the number of bits in
x and LM denote the maximum packet length (in bits). The
time unit is the time it takes for a single bit to be transferred
on an external link, so f(x)−s(x) = L(x). The time at which
a new packet is selected by an input and sent to the crossbar
is referred to as an input scheduling event. We also define to
the time at which an active period ends to be an input event.
The time at which an output selects a packet from one of its
crosspoint buffers is referred to as an output scheduling event.
We use event to refer to either type, when the type is clear
from the context.

We let Vij denote the VOQ at input i that contains packets
for output j and we let Vij(t) denote the number of bits
in Vij at time t. Similarly, we let Bij denote the crosspoint
buffer for packets from input i to output j, Bij(t) denote the
number of bits in Bij at time t, and B denote the capacity
of the crosspoint buffers. For all quantities that include a time
parameter, we sometimes omit the time parameter.

We focus on schedulers for systems in which packets are
fully buffered at the input line cards where they arrive before
they are sent to the crossbar. A packet is deemed to have
arrived only when the last bit has arrived. Consequently, an
ij-packet that is in the process of arriving at time t is not
included in Vij(t). We say that a VOQ is active, whenever the
last bit of its first packet has been received. For an active VOQ
Vij , we refer to the time period since it last became active
as the current active period. For a particular active period of
Vij , we define notations for several quantities. In particular,
if x was the first packet to arrive in the active period, we let
sij = s(x), fij = f(x). and Lij = L(x). The time of the
first input event in the active period is denoted by τij . We say
an input event is a backlog event for Vij if when the event
occurs, Bij is too full to accept the first packet in Vij , and we
let βij denote the time of the first backlog event of an active
period. We say that Vij is backlogged if it is active, and its
most recent input event was a backlog event. These definitions
are illustrated in Figure 2. Note that τij < fij + LM/S and
that if βij 6= τij , then βij ≥ τij + Lij/S.

While we require that packets be fully buffered at inputs, we
assume that packets can be streamed directly though crossbar
buffers, and through output buffers to outgoing links. The first
assumption is the natural design choice. The second was made
to simplify the analysis slightly, but is not essential. Extending
our analyses to the case where outputs fully buffer packets is
straightforward.

To define a specific crossbar scheduler, we must specify

3

an input scheduling policy and an output scheduling policy.
The input scheduling policy selects an active VOQ from
which to transfer a packet to the crossbar. We assume that
the input scheduler is defined by an ordering of the active
VOQs. At each input scheduling event, the scheduler selects
the first active VOQ in this ordering that is not backlogged,
and transfers the first packet in this VOQ to the crossbar. We
also assume that the output scheduling policy is defined by an
ordering imposed on the packets to be forwarded from each
output. At each output scheduling event, the scheduler selects
the crosspoint buffer whose first packet comes first in this
packet ordering.

Given a VOQ ordering for an input, we say that one VOQ
precedes another if it comes before the other in this VOQ
ordering. We extend the precedes relation to the packets in the
VOQs and the bits in those packets by ordering the packets
(bits) in different VOQs according to the VOQ ordering, and
packets (bits) in the same VOQ according to their position in
the VOQ. To simplify the language used in the analysis to
follow, we include the bits in Vij in the set of bits that are
said to precede Vij . For packets (bits) at different inputs going
to the same output, we say that one precedes the other, if it
comes first in the ordering that defines the output scheduling
policy.

For an active VOQ Vij , we let pij(t) equal the number of
bits in VOQs at input i that precede Vij at time t (note, this
includes the bits in Vij), plus the number of bits in the current
incoming packet that have been received so far (if there is
such a packet). We define qj(t) to be the number of bits at
output j at time t and qij(t) to be the number of bits at output
j that precede the last bit in Vij .

With these preliminaries, we can now define two key quan-
tities, slack and margin. Specifically, we define slackij(t) =
qj(t)−pij(t) and marginij(t) = qij(t)−pij(t). In the analysis
to follow, we will show that shortly after the start of an active
period for Vij , slackij becomes non-negative and stays non-
negative. This is useful, because when an output j becomes
idle, qj is necessarily zero. If slackij is not negative, then
pij must be zero also. Since this implies that Vij is empty,
there can be no packet at input i that should be going out
on output j. Consequently, we can show that a scheduler is
work-conserving by showing that the slack is non-negative.
We can use margin in a very similar way when showing that a
crossbar-based system emulates an output-queued switch with
a specific scheduling policy.

Our worst-case performance guarantees are defined relative
to a reference system consisting of an ideal output-queued
switch followed by a fixed delay of length T . An output-
queued switch is one in which packets are transferred directly
to output-side queues as soon as they have been completely
received. An output-queued switch is fully specified by the
queueing discipline used at the outputs.

In [3], the class of Push in, First Out (PIFO) queueing
disciplines is defined to include all queueing disciplines that
can be implemented by inserting arriving packets into a list,
and selecting packets for transmission from the front of the list.
That is, a PIFO discipline is one in which the relative transmis-
sion order of two packets is fixed when the later arriving packet

T/LMS B/LM

T-work
conservation

Packet
Group-by-VOQ

T-emulation

2 2/(S–1)
(2 for S=2)

2

2/(S–1)+1/S3+2/(S–1)2
restricted PIFO (2.5 for S=2)(5 for S=2)

2

T-emulation
restricted PIFO

2/(S–1)
(2 for S=2)

T-work
conservationPacket

Least-Occupied
Output First 2/(S–1)+1/S

(2.5 for S=2)

2S/(S–1)
(4 for S=2)

3S/(S–1)
(6 for S=2)

2

2
restricted PIFO (2.5 for S 2)(6 for S 2)

Fig. 3. Quantitative Results

arrives. Most queuing disciplines of practical interest belong to
this class. In [4], the restricted PIFO queueing disciplines are
defined as those PIFO disciplines in which any two ij-packets
are transmitted in the same order they were received. Note that
this does not restrict the relative transmission order of packets
received at different inputs. Our emulation results for buffered
crossbars apply to restricted PIFO queueing disciplines.

We say that a crossbar T-emulates an output-queued switch
using a specific queueing discipline if, when presented with an
input packet sequence, it forwards each packet in the sequence,
at the same time that it would be forwarded by the reference
system, with an output delay of T . We say that a switch is
work-conserving, if whenever there is a packet in the system
for output j, output j is sending data. A crossbar-based system
is T -work-conserving if it T -emulates some work-conserving
output-queued switch. Alternatively, we can say that a system
is T -work-conserving if output j is busy whenever there is a
packet in the system for output j that arrived at least T time
units before the current time.

A crossbar that T -emulates an output-queued switch is
defined by a specific crossbar scheduling algorithm and by the
output queueing discipline of the emulated switch. To achieve
the emulation property, the output line cards of the crossbar
must hold each packet until T time units have passed since
its arrival. While it is being held, other packets that reach the
output after it, may be inserted in front of it in the PIFO list.
Whenever the output becomes idle, the linecard selects for
transmission the first packet in the list which arrived at least
T time units in the past. This may not be the first packet in
the list, since the PIFO ordering need not be consistent with
the arrival order.

In the next few sections, we will prove work-conservation
and emulation results for two crossbar scheduling algorithms.
These results all require that the speedup S, crossbar buffer
size B, and time delay T be at least as large as some minimum
threshold. Figure 3 summarizes these thresholds. Note that the
values for B and T are stated relative to the maximum packet
length LM .

IV. COMMON PROPERTIES

In this section, we prove a number of properties that apply
to certain large classes of crossbar schedulers. Readers may
want to skip this section on first reading, referring back to the
individual lemmas as they are used in later sections.

4

A. Prompt Schedulers

All the schedulers we consider have the property that
they keep the inputs and outputs busy whenever possible. In
particular, if an input line card has any packet x at the head
of one of its VOQs and the VOQ is not backlogged, then the
input must be transferring bits to some crosspoint buffer at rate
S. Similarly, if any crosspoint buffer for output j is not empty,
then output j must be transferring bits from some crosspoint
buffer at rate S. A scheduler that satisfies these properties is
called a prompt scheduler.

The first two lemmas provide lower bounds on qj that apply
to all prompt schedulers. These are useful when attempting to
establish lower bounds on slackij .

Lemma 1: For a buffered crossbar using any prompt sched-
uler, qj(t) ≥ (1− 1/S)Bij(t) for all i.

Proof: . If Bij(t) > 0, then Bij became non-empty at
some time no later that t − Bij(t)/S, since Bij can grow
at a rate no faster than S. That is, Bij > 0 throughout the
interval [t−Bij(t)/S, t]. For any prompt scheduler, whenever a
crosspoint buffer for a given output is non-empty, the crossbar
transfers bits to the output at rate S. Since an output sends
bits from the output queue to the link at rate 1, an output
queue grows at rate S−1 during any period during which one
or more of its crosspoint buffers is non-empty. It follows that
qj(t) ≥ (1− 1/S)Bij(t). �

Lemma 2: Consider an active period for Vij . For any
prompt scheduler

qj(τij) ≥ (1− 1/S)Bij(τij) + (S − 1)(τij − fij)

if Bij(τij) > 0.
Proof: . Note that since Vij is inactive just before fij ,

Bij cannot grow between fij and τij , hence Bij(fij) ≥
Bij(τij) > 0. Consequently, qj must increase at rate S − 1
throughout the interval [fij , τij], so

qj(τij) ≥ qj(fij) + (S − 1)(τij − fij)

By Lemma 1,

qj(fij) ≥ (1− 1/S)Bij(fij) ≥ (1− 1/S)Bij(τij)

Combining the two inequalities yields the desired result. �

B. Invariant Schedulers

We say that a scheduling algorithm is invariant if it does not
change the relative order of any two VOQs during a period
when they are both continuously active. This property is shared
by a number of different crossbar schedulers, including one we
consider in detail in the next section.

The next lemma can be used to show that for prompt and
invariant schedulers, slack does not decrease following the first
scheduling event of an active period, and it applies to any
prompt and invariant scheduler.

Lemma 3: Let t1 be the time of an input scheduling event
in an active period of Vij and let t > t1 be no later than the
next event at input i. For any prompt and invariant scheduler,

slackij(t) ≥ slackij(t1) + (S − 2)(t− t1)

if B ≥ 2LM .

Proof: . If Vij is backlogged at time t1, then Bij(t1) >
LM which implies that Bij remains non-empty until at least
t1 + LM/S ≥ t. Consequently, qj(t) ≥ qj(t1) + (S − 1)(t−
t1). Since the VOQ ordering is invariant in the interval [t1, t],
any increase in pij during this interval can only result from
the arrival of bits on the input link. Consequently, pij(t) ≤
pij(t1)+(t−t1) and slackij(t) ≥ slackij(t1)+(S−2)(t−t1).

If Vij is not backlogged at t1, then either Vij or another
VOQ that precedes Vij must be selected at t1. In either case,
pij(t) ≤ pij(t1)−(S−1)(t−t1). Since qj(t) ≥ qj(t1)−(t−t1),
it follows that slackij(t) ≥ slackij(t1) + (S − 2)(t− t1). �

We can prove a stronger version of Lemma 3 that can be
used to obtain more precise results.

Lemma 4: Let t1 be the time of an input scheduling event
in an active period of Vij and let t > t1 be no later than the
next event at input i. For any prompt and invariant scheduler
with S ≥ 2 and B ≥ 2LM , if slackij(t1) ≥ −Vij(t1) then
slackij(t) ≥ −Vij(t).

Proof: . If Vij(t) ≥ Vij(t1) then the result follows from
Lemma 3. Assume then that Vij(t) < Vij(t1). This implies
that Vij was selected at t1. Consequently, qj increases at
rate S − 1 during the interval [t1, t] (since the scheduling
algorithm is prompt), while pij decreases at rate ≥ S−1 (since
the scheduling algorithm is invariant). Thus, slackij(t) ≥
slackij(t1)+2(S−1)(t− t1). Since Vij can decrease at a rate
no faster than S, Vij(t) ≥ Vij(t1)− S(t− t1). Consequently,

slackij(t) ≥ slackij(t1) + 2(S − 1)(t− t1)
≥ −Vij(t1) + 2(S − 1)(t− t1)
≥ −(Vij(t) + S(t− t1)) + 2(S − 1)(t− t1)
= −Vij(t) + (S − 2)(t− t1)
≥ −Vij(t)

since S ≥ 2. �

C. ij-FIFO Schedulers

We say that a system is ij-FIFO if for all inputs i and
outputs j, all ij-packets are forwarded in the same order they
were received. Note that systems that implement restricted
PIFO queueing disciplines are ij-FIFO.

In this subsection, we prove several lemmas that are useful
in proving emulation results. The first two lemmas provide
lower bounds on qij for prompt and ij-FIFO schedulers. These
are useful for proving lower bounds on marginij .

Lemma 5: For any prompt and ij-FIFO scheduler, qij(t) ≥
(1− 1/S)(Bij(t)− LM).

Proof: . The statement is trivially true if Bij(t) ≤ LM .
So assume, Bij(t) > LM , and note that this implies that Bij

became non-empty at some time no later that t − Bij(t)/S,
since Bij can grow at a rate no faster than S. Consequently,
there must be a scheduling event at output j in the interval
[t−Bij(t)/S, (t−Bij(t)/S)+LM/S] and from the time of that
event until t, output j must be receiving bits that precede Vij ,
since the scheduler is ij-FIFO. Consequently, qij increases at
rate S− 1 throughout the interval [(t−Bij(t)/S) +LM/S, t]
and so qij(t) ≥ (1− 1/S)(Bij(t)− LM). �

5

Lemma 6: Consider an active period for Vij . For any
prompt and ij-FIFO scheduler,

qij(τij) ≥ (1− 1/S)(Bij(τij)− LM) + (S − 1)(τij − fij)

if Bij(τij) ≥ LM .
Proof: . Since Bij cannot grow between fij and τij ,

Bij(fij) ≥ Bij(τij) ≥ LM . Consequently, Bij became non-
empty no later than fij − LM/S, which implies that qij

increases at rate S−1 throughout the interval [fij , τij]. Hence,

qij(τij) ≥ qij(fij) + (S − 1)(τij − fij)
≥ (1− 1/S)(Bij(fij)− LM) + (S − 1)(τij − fij)
≥ (1− 1/S)(Bij(τij)− LM) + (S − 1)(τij − fij)

�
The next lemma can be used to show that margin does not

decrease after the first event of an active period. It applies to
any scheduler that is prompt, invariant and ij-FIFO.

Lemma 7: Let t1 be the time of an input scheduling event
in an active period of Vij and let t > t1 be no later than
the next event at input i. For any prompt, invariant and ij-
FIFO scheduler with speedup S and B ≥ 2LM , marginij(t) ≥
marginij(t1) + (S − 2)(t− t1).

Proof: . If Vij is backlogged at t1, then Bij(t1) > LM

and Bij became non-empty before t1−LM/S and will remain
non-empty until at least t1 + LM/S. This implies that qij

increases at rate S − 1 throughout the interval [t1, t] (since
the scheduler is ij-FIFO). Since pij can increase at a rate no
faster than 1 during this period, marginij(t) ≥ marginij(t1)+
(S − 2)(t− t1). If Vij is not backlogged at t1, pij decreases
at rate ≥ S − 1 in the interval [t1, t] (since the scheduler is
invariant) and since qij can decrease at a rate no faster than
1, marginij(t) ≥ marginij(t1) + (S − 2)(t− t1). �

V. PACKET GROUP BY VOQ
Group by Virtual Output Queue (GVOQ) is a cell switch

scheduling algorithm first described in [3] and extended to
buffered crossbars in [4]. We define the Packet GVOQ (PGV)
scheduler by defining an ordering that it imposes on the VOQs.
In this ordering, the relative order of two VOQs does not
change so long as they both remain active. Hence, PGV is
invariant. When an inactive VOQ becomes active, it is placed
first in the VOQ ordering. When a VOQ becomes inactive,
it is removed from the VOQ ordering. Different variants of
PGV can be defined by specifiying different output scheduling
strategies.

A. T -Work-Conservation

In this section, we show that regardless of the specific output
scheduling policy used, PGV is T -work-conserving. We prove
two versions of the work-conservation result. The first is a bit
weaker than the second, but is included because the analysis is
more straightforward and hence it provides a useful stepping
stone to the more difficult results to follow.

Theorem 1: Any PGV scheduler is T -work-conserving if
S ≥ 2, B ≥ (2 + 1/(S − 1))LM and T ≥ 2LM/(S − 1).

The proof of this theorem involves four steps. The first step
is to show that slack does not decrease after the first scheduling

event of an active period. This was shown in Lemma 3 in the
previous section. The second step, is to show that a backlog
event must occur near the start of an active period, and the
third step is to show that when the first backlog event occurs,
slack is non-negtive. These two steps are shown in the proofs
of the next two lemmas. The final step, which appears as the
proof of the theorem, is to show that when an output is idle,
no input can have a packet that has been present for more than
time T .

Lemma 8: Consider an active period for Vij in a crossbar
using a PGV scheduler with speedup S. If the duration of the
active period is at least 2LM/(S−1), then it includes at least
one backlog event for Vij and βij ≤ fij + 2LM/(S − 1).

Proof: . Suppose there is no backlog event in the interval
[τij , t] for t = fij + 2LM/(S − 1). Then, at each event in
this interval, the input scheduler selects either Vij or some
other VOQ that precedes Vij . Since the scheduling algorithm is
invariant, any contribution to increasing pij during this interval
can only result from the arrival of new bits from the input link.
Consequently, pij decreases at a rate ≥ (S − 1) throughout
this period. Since pij(τij) ≤ Lij + (τij − fij),

pij(t) ≤ Lij + (τij − fij)− (S − 1)(t− τij)
= Lij + (τij − fij)

−(S − 1)((fij + 2LM/(S − 1))− τij)
= Lij + S(τij − fij)− 2LM

< LM + S(LM/S)− 2LM = 0

The first line in the above inequality follows from the fact
that pij(fij) = Lij and that pij can increase at rate at
most 1 during the interval [sij , τij] and must decrease at rate
S − 1 after τij . The second and third lines follow directly
from the definitions, and the last line from the fact that
τij − fij < LM/S. The above result contradicts the premise
that the duration of the active period is at least 2LM/(S− 1).
�

Our next lemma shows that within a short time following
the start of an active period, slackij ≥ 0.

Lemma 9: Consider some active period for Vij that includes
the time t ≥ fij + 2LM/(S − 1). For any PGV scheduler,
slackij(t) > 0 if S ≥ 2 and B ≥ (2 + 1/(S − 1))LM .

Proof: . We show that slackij(βij) > 0. The result then
follows from Lemmas 3 and 8.

If βij = τij , then by Lemma 2,

qj(βij) > (1− 1/S)(B − LM) + (S − 1)(τij − fij)

For any PGV scheduler,

pij(βij) = pij(τij) ≤ LM + (τij − fij)

Combining the inequalities for pij and qj , we obtain

slackij(βij) > (1−1/S)(B−LM)+(S−2)(τij−fij)−LM ≥ 0

since S ≥ 2 and B ≥ (2 + 1/(S − 1))LM .
Now, suppose βij > τij . Since at least one packet must

be sent from Vij during the active period, in order for it to

6

become backlogged, βij ≥ τij + Lij/S. During the interval
[τij , βij], pij decreases at rate ≥ S − 1. Consequently,

pij(βij) ≤ Lij + (τij − fij)− (S − 1)(βij − τij)
< Lij/S + LM/S ≤ 2LM/S

By Lemma 1, qj(βij) > (1−1/S)(B−LM) ≥ 2(1−1/S)LM ,
so slackij(βij) > 2(1− 1/S)LM − 2LM/S ≥ 0. �

We can now proceed to the proof of the theorem.
Proof of Theorem 1. Suppose some output j is idle at time

t and no input is currently sending it a packet, but some input
i has a packet x for output j with f(x) + 2LM/(S − 1) < t.
By Lemma 9, slackij(t) > 0. Since, qj(t) = 0, this implies
that pij(t) < 0, which contradicts the fact that Vij is active at
t. �

Using a more precise analysis, we can reduce the required
crossbar buffer size to 2LM/(S − 1).

Theorem 2: Any PGV scheduler with S ≥ 2 and B ≥ 2LM

is T -work-conserving for T ≥ 2LM/(S − 1).
To prove this, we must first show that slack is bounded from

below, shortly after the start of an active period.
Lemma 10: Consider an active period for Vij that includes

the time t ≥ fij +2LM/(S−1). For any PGV scheduler with
speedup S ≥ 2 and B ≥ 2LM , slackij(t) > −Vij(t).

Proof: . If Bij(τij) > 0 then by Lemma 2, qj(τij) >
τij − fij . Since

pij(τij) ≤ Lij + (τij − fij) ≤ Vij(τij) + (τij − fij)

it follows that slackij(τij) > −Vij(τij). By Lemma 4,
slackij(t) > −Vij(t).

Now, suppose that Bij(τij) = 0. By Lemma 8, βij ≤ fij +
2LM/(S − 1) ≤ t. If x is the first packet in Vij at βij , then
βij > τij + (B − L(x))/S. During the interval [τij , βij], pij

decreases at rate ≥ S − 1. Consequently,

pij(βij) < Lij + (τij − fij)− (S − 1)(βij − τij)
≤ (1 + 1/S)LM − (1− 1/S)(B − L(x))

By Lemma 1, qj(βij) > (1− 1/S)(B − L(x)) so,

slackij(βij) > 2(1− 1/S)(B − L(x))− (1 + 1/S)LM

≥ 4(1− 1/S)LM − (1 + 1/S)LM

−2(1− 1/S)L(x)
= (3− 5/S)LM − (1− 2/S)L(x)− L(x)
> −L(x) ≥ −Vij(βij)

By Lemma 4, slackij(t) > −Vij(t). �
We can now proceed to prove the theorem.
Proof of Theorem 2. Suppose some output j is idle at time

t and no input is currently sending it a packet, but some input
i has a packet x for output j with f(x) + 2LM/(S − 1) < t.
By Lemma 10, slackij(t) > −Vij(t). Since, qj(t) = 0, this
implies that pij(t) < Vij(t), which contradicts the definition
of pij . �

B. T -Emulation Results for PGV

We refer to a PGV scheduler defined by a restricted PIFO
queueing discipline as a PGV-RP sechduler. We show that
for any restricted PIFO queueing discipline, the corresponding
PGV-RP scheduler T -emulates an ideal output-queued switch
using the same discipline. Our result for PGV generalizes the
corresponding result for cell-based crossbars given in [3].

Theorem 3: Let X be an output-queued switch using a
restricted PIFO scheduler. A crossbar using the corresponding
PGV-RP scheduler T -emulates X if S ≥ 2, B ≥ (3+2/(S−
1))LM , and T ≥ (2/(S − 1) + 1/S)LM .

The analysis leading to this result is similar to the analysis
used to establish work-conservation. The first step is to show
that margin does not decrease following the first input event
of an active period (Lemma 7). The second step is to establish
a lower bound on margin at the time of the first backlog event.
We then use this lower bound to prove the emulation result.

Lemma 11: Consider an active period for Vij that includes
t ≥ fij + 2LM/(S − 1). For any PGV-RP scheduler,
marginij(t) > LM/S if S ≥ 2 and B ≥ (3+2/(S−1))LM .

Proof: . We show that marginij satisfies the bound at the
time of the first backlog event. If Vij is backlogged at τij ,
then Bij(τij) > B − LM and by Lemma 6,

qij(τij) > (1− 1/S)(B − 2LM) + (S − 1)(τij − fij)

Since pij(τij) ≤ LM + (τij − fij),

marginij(τij) > (1− 1/S)(B − 2LM)
+(S − 1)(τij − fij)
−(LM + (τij − fij))

≥ (1− 1/S)B − (3− 2/S)LM

This is ≥ LM/S so long as B ≥ (3 + 2/(S − 1))LM . By
Lemma 7, marginij(t) > LM/S.

Now suppose Vij is not backlogged at τij . By Lemma 8,
βij ≤ t and since Vij is backlogged at βij , Bij(βij) > B −
LM , so by Lemma 5, qij(βij) > (1−1/S)(B−2LM). Since,
βij ≥ τij + Lij/S, it follows that

pij(βij) ≤ Lij + LM/S − (1− 1/S)Lij ≤ 2LM/S

and

marginij(βij) > (1− 1/S)(B − 2LM)− 2LM/S

= (1− 1/S)B − 2LM

This is ≥ LM/S so long as B ≥ ((2+3/(S−1))LM which is
implied by the condition on B in the statement of the lemma.
By Lemma 7 marginij(t) > LM/S. �

We can now proceed to the proof of the theorem.
Proof of Theorem 3. Suppose that up until time t, the PGV-

RP crossbar faithfully emulates the output-queued switch, but
that at time t, the output-queued switch begins to forward an
ij-packet x, while the crossbar does not.

Now suppose that in the crossbar, one or more bits of x
have reached Bij by time t − LM/S. Note that the interval
[t − LM/S, t) must contain at least one scheduling event at
output j and all such events must select packets that precede x.
However, this implies that during some non-zero time interval

7

[t1, t], output j is continuously receiving bits that precede x
at a faster rate than it can forward them to the output. This
contradicts that fact that by time t, the crossbar has forwarded
all the bits that precede x (since it faithfully emulates the
output-queued switch up until time t).

Assume then that at time t − LM/S, no bits of x have
reached Bij . Since the output queued switch has an output
delay of T , f(x) ≤ t−T , so t−LM/S ≥ f(x)+2LM/(S−
1). Since the crossbar has sent everything sent by the output-
queued switch up until t, it follows that qij(t − LM/S) ≤
LM/S. By Lemma 11, marginij(t − LM/S) > LM/S and
hence pij(t− LM/S) < 0, which is not possible. �

The analysis of Lemma 11 requires a crossbar buffer of
size at least 5LM when S = 2. We conjecture that this can be
reduced using a more sophisticated analysis.

VI. PACKET LOOFA

The Least Occupied Output First Algorithm (LOOFA) is a
cell scheduling algorithm described in [8]. We define an asyn-
chronous crossbar scheduling algorithm based on LOOFA,
called Packet LOOFA (PLF). Like PGV, PLF is defined by
the ordering it imposes on the VOQs at each input. The
ordering of the VOQs is determined by the number of bits
in the output queues. In particular, when a VOQ Vij becomes
active, it is inserted immediately after the last VOQ Vih, for
which qh ≤ qj . If there is no such VOQ, it is placed first in
the ordering. At any time, active VOQs may be re-ordered,
based on the output occupancy. We allow one VOQ to move
ahead of another during this re-ordering, only if its output
has strictly fewer bits. The work-conservation result for PLF
is comparable to that for PGV, but the required analysis is
technically more difficult because in PLF, the relative orders
of VOQs can change.

Because the order of VOQs can change, PLF is also more
responsive to changing traffic conditions than PGV. While this
has no effect on work-conservation when S ≥ 2, it does
provide better fairness when used with smaller speedups. As
one example of this, consider the following traffic pattern.
From time 0 to time T , a switch with speedup of S < 4/3,
receives packets on inputs A and B for output X at the link
rate of 1. After time T , input A receives packets for output
Y (at rate 1) while input B receives packets for output Z.
Due to the symmetry of the traffic pattern, a scheduler has no
reason to favor one input over the other, so we assume that
the inputs are treated fairly by the output scheduling policy.
Up until time T , the two inputs each send packets to X at
rate S/2 and X forwards packets at rate 1, while building a
backlog. If a PGV scheduler is used, then after time T , input A
gives preference to output Y , while input B gives preference
to output Z. Consequently, output X receives packets only at
rate 2(S−1). As a result, the output side backlog at X is fully
consumed by time ((2−S)/(3− 2S))T , after which X starts
forwarding packets at rate 2(S−1), while both outputs Y and
Z continue to forward packets at rate 1. So for S = 1.2, X
is limited to an output rate of 0.4. On the other hand, a PLF
scheduler attempts to keep the output queue lengths equal, so
after time ((2 − S)/(3 − 2S))T , outputs X , Y and Z will

all receive packets at rate 2S/3. So for S = 1.2, all three
outputs will forward packets at rate 0.8. This doubles the rate
at which X is able to send, dramatically improving the fairness
with respect to the other outputs.

A. More Definitions

To facilitate the analysis of PLF, it’s helpful to separate the
analysis of “old bits” from “new bits”. When considering an
active period for Vij , the old bits at input i are those bits that
arrived before sij . All other bits at input i are considered new.
Also, we say that a VOQ V is older than a VOQ W at time
t if both are active, and V last became active before W did.
We say that a VOQ V passes a VOQ W during a given time
interval, if W precedes V at the start of the interval and V
precedes W at the end of the interval.

For an active VOQ, Vij , we let newij(t) be the number of
bits present at input i at time t that arrived in the interval
[sij , t]. We let pij(t) equal newij(t) plus the number of bits
that precede Vij at time t that arrived before sij . Note that
pij(t) ≤ pij(t) and consequently,

slackij(t) ≥ slackij(t) = qj(t)− pij(t)

and
marginij(t) ≥ marginij(t) = qij(t)− pij(t)

B. Additional General Lemmas

Here we give several more lemmas that apply to a broad
class of scheduling algorithms and are useful for establishing
both T -work-conservation and T -emulation results for PLF.
The reader may want to skip this section on first reading, and
refer back to the lemmas presented here, as they are used. The
proofs of the first two lemmas are omitted, as they are very
similar to proofs of earlier lemmas.

Lemma 12: Let t1 be the time of an input scheduling event
in an active period of Vij and let t > t1 be no later than the
next event at input i. For any prompt scheduler,

slackij(t) ≥ slackij(t1) + (S − 2)(t− t1)

if no older VOQ passes Vij in [t1, t] and B ≥ 2LM .
Lemma 13: Let t1 be the time of an input scheduling event

in an active period of Vij and let t > t1 be no later than the
next event at input i. For any prompt, ij-FIFO scheduler,

marginij(t) ≥ marginij(t1) + (S − 2)(t− t1)

if no older VOQ passes Vij in [t1, t] and B ≥ 2LM .
Our next lemma applies to any scheduling algorithm.
Lemma 14: If there is some VOQ that is older than Vij and

that precedes Vij at time t, then there is some such VOQ Vih

for which pij(t) ≤ pih(t).
Proof: . Let Vih be a VOQ that is older than Vij and that

precedes Vij at time t. More specifically, let Vih be that VOQ
that comes latest in the VOQ ordering, among all VOQs that
satisfy the condition. Let X be the set of bits that precede Vij

at time t but not Vih. Note that |X| = pij(t) − pih(t) and
that all bits in X must have arrived since sij (otherwise, there
would be some VOQ older than Vij that precedes Vij and

8

comes later in the VOQ ordering than Vih). Since Vih is older
than Vij , these bits also arrived after sih. Let Y be the set of
bits that arrived after sij and are still present at time t and do
not precede Vij . Note that |Y | = pij(t) − pij(t) and that X
and Y have no bits in common. Now, let Z be the set of bits
that arrived since sih and do not precede Vih. Both X and Y
are subsets of Z and so |X| + |Y | ≤ |Z| = pih(t) − pih(t).
Consequently,

(pij(t)− pih(t)) + (pij(t)− pij(t)) ≤ pih(t)− pih(t)

which implies that pij(t) ≤ pih(t). �

C. T -Work-Conservation

Theorem 4: A buffered crossbar using any PLF scheduler
is T -work-conserving if S ≥ 2, B ≥ 2LMS/(S − 1), and
T ≥ 2LM/(S − 1).

To prove the theorem, we need the following lemma.
Lemma 15: If Vij is active at t ≥ τij , then for any PLF

scheduler, either
slackij(t) ≥ 0

or
pij(t) ≤ (1 + 1/S)LM − (S − 1)(t− τij)

if S ≥ 2 and B ≥ 2LMS/(S − 1).
Before we proceed with the proof of the lemma, we note

that for t ≥ fij + 2LM/(S − 1),

(1 + 1/S)LM − (S − 1)(t− τij)
≤ (1 + 1/S)LM + (S − 1)(τij − fij)− 2LM

≤ (1 + 1/S)LM + (1− 1/S)LM − 2LM ≤ 0

Consequently, the lemma implies that slackij(t) ≥ 0 for
t ≥ fij + 2LM/(S − 1) and since slackij(t) ≥ slackij(t),
slackij(t) ≥ 0 also. We state this as a corollary.

Corollary 1: If Vij is active at t ≥ fij + 2LM/(S − 1),
then for any PLF scheduler, slackij(t) ≥ 0, if S ≥ 2 and
B ≥ 2LMS/(S − 1).

Proof of Lemma 15. Assume that there is some time t when
the lemma does not hold. More specifically, let t be the earliest
time when it is not true for some VOQ and let Vij be the oldest
VOQ that violates the lemma at time t.

Suppose first there is no event in [τij , t] at which there is
an older VOQ that precedes Vij . This implies that

pij(τij) ≤ τij − sij ≤ (1 + 1/S)LM

It also implies that there are no two consecutive events in
[τij , t] between which an older VOQ passes Vij . Consequently,
by Lemma 12, slackij does not decrease between any two
consecutive events in [τij , t].

If βij > t then Vij is eligible for selection at every event
in [τij , t]. This implies that at every such event, the selected
packet precedes Vij . Consequently,

pij(t) ≤ pij(τij)− (S − 1)(t− τij)
≤ (1 + 1/S)LM − (S − 1)(t− τij)

which contradicts our assumption that the lemma does not hold
at t. Assume then that βij ≤ t. By Lemma 1,

qj(βij) ≥ (1− 1/S)(B − LM)

and since

pij(βij) ≤ pij(τij)− (S − 1)(βij − τij)

it follows that

slackij(βij) ≥ (1− 1/S)(B − LM)
−((1 + 1/S)LM − (S − 1)(βij − τij))

≥ (1− 1/S)B − 2LM

which is ≥ 0 for B ≥ 2(S/(S−1))LM . Since slackij does not
decrease in [τij , t], it follows that slackij(t) ≥ 0. This again,
contradicts our assumption that the lemma does not hold at t.

From the above, it follows that there must be some event
in [τij , t] at which there is an older VOQ that precedes Vij .
Let t1 be the time of the latest such event. By Lemma 14,
there is a VOQ Vih for which pij(t1) ≤ pih(t1) and since
Vih precedes Vij at t1, qj(t1) ≥ qh(t1) and consequently,
slackij(t1) ≥ slackih(t1). If t1 = t, then since Vij is the
oldest VOQ that does not satisfy the lemma at t, Vih does
satisfy the lemma. That is,

slackih(t) ≥ 0

or
pih(t) ≤ (1 + 1/S)LM − (S − 1)(t− τih)

If, slackih(t) ≥ 0, then slackij(t) ≥ 0 also. On the other hand,
if pih(t) ≤ (1 + 1/S)LM − (S − 1)(t− τih), then

pij(t) ≤ (1 + 1/S)LM − (S − 1)(t− τih)
≤ (1 + 1/S)LM − (S − 1)(t− τij)

Once again, this contradicts our assumption that the lemma
does not hold at t. Consequently, we must have t1 < t and
since t is the earliest time at which the lemma is violated,
either

slackij(t1) ≥ 0

or
pij(t1) ≤ (1 + 1/S)LM − (S − 1)(t1 − τij)

If slackij(t1) ≥ 0 then by Lemma 12, slackij(t) ≥ 0 also.
Assume then, that pij(t1) ≤ (1+1/S)LM − (S−1)(t1−τij).
Now, if βij ≥ t, then Vij is eligible for selection at every event
in [t1, t] and so pij(t) ≤ (1+1/S)LM − (S− 1)(t− τij). On
the other hand, if t1 ≤ βij < t, it follows that

pij(βij) ≤ (1 + 1/S)LM − (S − 1)(βij − τij)

and since qj(βij) ≥ (1− 1/S)(B − LM),

slackij(βij) ≥ (1− 1/S)(B − LM)
−((1 + 1/S)LM − (S − 1)(βij − τij))

≥ (1− 1/S)B − 2LM ≥ 0

Since slackij cannot decrease in [t1, t], it follows that
slackij(t) ≥ 0. Once again, this contradicts the assumption
that the lemma does not hold at t.

9

That leaves one more case: βij < t1. Since slackij(t1) ≥ 0
implies that slackij(t) ≥ 0, we must have

pij(t1) ≤ (1 + 1/S)LM − (S − 1)(t1 − τij)

Also, since qj(βij) ≥ (1− 1/S)(B − LM),

qj(t1) ≥ (1− 1/S)(B − LM)− (t1 − βij)

and

slackij(t1) ≥ (1− 1/S)(B − LM)− (t1 − βij)
−((1 + 1/S)LM − (S − 1)(t1 − τij))

≥ (1− 1/S)B + (S − 2)(t1 − τij)− 2LM

≥ (1− 1/S)B − 2LM ≥ 0

This completes the contradiction to our original assumption
that the lemma does not hold at time t. �

Proof of Theorem 4. Suppose some output j is idle at time t,
but some input i has a packet x for output j with f(x)+T < t.
By Corollary 1, slackij(t) ≥ 0. Since qj(t) = 0, this implies
that pij(t) ≤ 0, which contradicts the fact that Vij contains x
at t. �

D. T -Emulation

In this section we show that a variant of the PLF algorithm
is capable of emulating an output queued switch using any
restricted PIFO queueing discipline. This variant differs from
the standard PLF algorithm in that it orders VOQs based on
the values of qij , rather than qj . That is, when Vij becomes
non-empty, it is inserted into the VOQ ordering after the last
VOQ Vih for which qih ≤ qij . If there is no such VOQ, Vij

is placed first in the ordering. Strictly speaking, this variant
is different from PLF, so to avoid confusion we refer to it as
Refined PLF or RPLF.

Theorem 5: Let X be an output-queued switch using a
restricted PIFO scheduler. A crossbar using the corresponding
RPLF scheduler T -emulates X if S ≥ 2 and B ≥ 3LMS/(S−
1) and T ≥ (2/(S − 1) + 1/S)LM .

To prove the theorem, we need the following lemma.
Lemma 16: If Vij is active at t ≥ τij , then for any RPLF

scheduler, either

marginij(t) ≥ LM/S

or
pij(t) ≤ (1 + 1/S)LM − (S − 1)(t− τij)

if S ≥ 2 and B ≥ 3LMS/(S − 1).
Proof: . Assume that there is some time t when the lemma

does not hold. More specifically, let t be the earliest time when
it is not true for some VOQ and let Vij be the oldest VOQ
that violates the lemma at time t.

Suppose first there is no event in [τij , t] at which there is
an older VOQ that precedes Vij . This implies that

pij(τij) ≤ τij − sij ≤ (1 + 1/S)LM

It also implies that there are no two consecutive events in
[τij , t] between which an older VOQ passes Vij . Consequently,
by Lemma 13, marginij does not decrease between any two
consecutive events in [τij , t].

If βij > t then Vij is eligible for selection at every event
in [τij , t]. This implies that at every such event, the selected
packet precedes Vij . Consequently,

pij(t) ≤ pij(τij)− (S − 1)(t− τij)
≤ (1 + 1/S)LM − (S − 1)(t− τij)

which contradicts our assumption that the lemma does not hold
at t. Assume then that βij ≤ t. By Lemma 5,

qij(βij) ≥ (1− 1/S)(B − 2LM)

and since

pij(βij) ≤ pij(τij)− (S − 1)(βij − τij)

it follows that

marginij(βij) ≥ (1− 1/S)(B − 2LM)
−((1 + 1/S)LM − (S − 1)(βij − τij))

≥ (1− 1/S)B − (3− 1/S)LM

which is ≥ LM/S for B ≥ 3LMS/(S − 1). Since marginij

does not decrease in [τij , t], it follows that marginij(t) ≥
LM/S. This again, contradicts our assumption that the lemma
does not hold at t.

From the above, it follows that there must be some event
in [τij , t] at which there is an older VOQ that precedes Vij .
Let t1 be the time of the latest such event. By Lemma 14,
there is a VOQ Vih for which pij(t1) ≤ pih(t1) and since
Vih precedes Vij at t1, qij(t1) ≥ qih(t1) and consequently,
marginij(t1) ≥ marginih(t1). If t1 = t, then since Vij is the
oldest VOQ that does not satisfy the lemma at t, Vih does
satisfy the lemma. That is,

marginih(t) ≥ LM/S

or
pih(t) ≤ (1 + 1/S)LM − (S − 1)(t− τih)

If marginih(t) ≥ LM/S, then marginij(t) ≥ LM/S also. On
the other hand, if pih(t) ≤ (1 + 1/S)LM − (S − 1)(t− τih),
then

pij(t) ≤ (1 + 1/S)LM − (S − 1)(t− τih)
≤ (1 + 1/S)LM − (S − 1)(t− τij)

Once again, this contradicts our assumption that the lemma
does not hold at t. Consequently, we must have t1 < t and
since t is the earliest time at which the lemma is violated,
either

marginij(t1) ≥ LM/S

or
pij(t1) ≤ (1 + 1/S)LM − (S − 1)(t1 − τij)

If marginij(t1) ≥ LM/S then by Lemma 13, marginij(t) ≥
LM/S also. Assume then, that

pij(t1) ≤ (1 + 1/S)LM − (S − 1)(t1 − τij)

Now, if βij ≥ t, then Vij is eligible for selection at every
event in [t1, t] and so

pij(t) ≤ (1 + 1/S)LM − (S − 1)(t− τij)

10

On the other hand, if t1 ≤ βij < t, it follows that

pij(βij) ≤ (1 + 1/S)LM − (S − 1)(βij − τij)

and since qij(βij) ≥ (1− 1/S)(B − 2LM),

marginij(βij) ≥ (1− 1/S)(B − 2LM)
−((1 + 1/S)LM − (S − 1)(βij − τij))

≥ (1− 1/S)B − (3− 1/S)LM ≥ LM/S

Since marginij cannot decrease in [t1, t], it follows that
marginij(t) ≥ LM/S. Once again, this contradicts the as-
sumption that the lemma does not hold at t.

That leaves one more case: βij < t1. Since marginij(t1) ≥
LM/S implies that marginij(t) ≥ LM/S, we must have

pij(t1) ≤ (1 + 1/S)LM − (S − 1)(t1 − τij)

Also, since qij(βij) ≥ (1− 1/S)(B − 2LM),

qij(t1) ≥ (1− 1/S)(B − 2LM)− (t1 − βij)

and

marginij(t1) ≥ (1− 1/S)(B − 2LM)− (t1 − βij)
−((1 + 1/S)LM − (S − 1)(t1 − τij))

≥ (1− 1/S)B + (S − 2)(t1 − τij)
−(3− 1/S)LM

≥ (1− 1/S)B − (3− 1/S)LM ≥ LM/S

This completes the contradiction to our original assumption
that the lemma does not hold at time t. �

Corollary 2: If Vij is active at t ≥ fij +2LM/(S−1), then
for any RPLF scheduler, marginij(t) ≥ LM/S, if S ≥ 2 and
B ≥ 3LMS/(S − 1).

Proof: . For t ≥ fij + 2LM/(S − 1),

(1 + 1/S)LM − (S − 1)(t− τij)
≤ (1 + 1/S)LM + (S − 1)(τij − fij)− 2LM

≤ (1 + 1/S)LM + (1− 1/S)LM − 2LM ≤ 0

Consequently, the lemma implies that marginij(t) ≥ 0 for
t ≥ fij + 2LM/(S − 1) and since marginij(t) ≥ marginij(t),
marginij(t) ≥ 0 also. �

Proof of Theorem 5. Suppose that up until time t, the PLF
crossbar faithfully emulates the output-queued switch with
added delay T , but that at time t, the output-queued switch
begins to forward an ij-packet x, while the crossbar does not.

Now suppose that in the crossbar, one or more bits of x
have reached Bij by time t − LM/S. Note that the interval
[t − LM/S, t) must contain at least one scheduling event at
output j and all such events must select packets that precede x.
However, this implies that during some non-zero time interval
[t1, t], output j is continuously receiving bits that precede x
at a faster rate than it can forward them to the output. This
contradicts the fact that by time t the crossbar forwards all bits
that precede x (since it faithfully emulates the output-queued
switch up until time t).

Assume then that at time t − LM/S, no bits of x have
reached Bij . Since the output-queued switch has a delay of T ,
f(x) ≤ t−T and so t−LM/S ≥ f(x)+2LM/(S−1). Since

the crossbar has sent everything sent by the output-queued
switch up until time t, it follows that qij(t−LM/S) ≤ LM/S.
By Corollary 2, marginij(t1) ≥ LM/S and hence pij(t1) <
0, which is not possible. �

VII. SEGMENT-BASED SWITCHING

Chuang, et al. [3] showed that cell-based crossbars can
emulate an output-queued switch using any push-in, first-out
(PIFO) queueing discipline. It is straightforward to define
PIFO scheduling policies that keep the cells of a packet to-
gether (simply insert later arriving cells of a given packet right
after their immediate predecessors). This makes it possible to
provide strong performance guarantees for packets not just
cells, using variants of standard crossbar schedulers that are
packet-aware. (Thanks to the anonymous referee who made
this observation in his insightful review of an earlier version
of this paper.) Note that this method may require that the
output line card forward cells that form the initial part of a
packet, before all cells in the packet are received, but this
is feasible in this context, since the crossbar scheduler can
guarantee that the remaining cells are received by the time
they are needed. While packet-aware schedulers can provide
packet-level performance guarantees in systems that use cell-
based crossbars, such systems still suffer from bandwidth
fragmentation, since packet lengths are generally not even
multiples of the cell length.

One possible objection to the use of crosspoint buffers that
are large enough to hold packets is that they might be too
expensive, even for modern integrated circuit components. A
32 port crossbar equipped with buffers large enough to hold
two 1500 byte packets would require a total of more than 3
MB of SRAM. In [10], the authors propose switching variable
length segments rather than cells, as a way of addressing
the fragmentation problem with fixed-size cells. If this is
coupled with a packet-aware crossbar scheduler that provides
performance guarantees for variable length packets, we can
reduce the crossbar buffer size to a multiple of the maximum
segment length. For IP routers, a maximum segment length
of 80 bytes is sufficient to eliminate bandwidth loss due to
fragmentation effects. Even after adding 20 bytes for header
information this reduces the required buffer size by a factor of
15, making it small enough to be easily accommodated within
the constraints of current circuit technologies.

Also observe that in a segment-based system, an input line
card can forward segments to an output before all segments
of the packet have been received. The performance guarantee
for the crossbar ensures that the remaining segments are
transferred through the crossbar in time to be forwarded on
the outgoing link, if the system is operated with a speedup of
2. Thus, we reduce both the amount of buffering required and
the delay.

VIII. CONCLUDING REMARKS

The results of sections 5 and 6 can be extended to systems
that place different constraints on where and when packets
are buffered. In particular, most routers buffer packets at
both input and output line cards, not just at the inputs.

11

Modifying the analysis to handle this case is straightforward
and requires only that the value of T be increased by LM/S,
to accommodate the added delay for a maximum length packet
to be fully buffered at the outputs.

With an asynchronous crossbar, it is possible to build a
system in which packets pass from inputs to outputs without
ever being fully buffered. This is known as cut-through switch-
ing [7] and can provide superior delay performance when load
is light. While our results cannot be directly applied to such
systems, it seems likely that similar results could be developed
for this model. Indeed, the segment-based switches already
approach the behavior of a cut-through switch.

There are several ways the work described here can be
extended. First, there are opportunities for tightening the
results, particularly with respect to the crossbar buffer size.
There seems to be no intrinsic reason that PLF should require
a larger crossbar buffer size than PGV. An analysis that directly
compares the behavior of a PLF scheduler to a PGV scheduler
may be able to reduce the buffer size requirement for PLF.

It would also be interesting to see if the analysis techniques
can be extended to provide stronger performance guarantees.
In particular, it would be useful to show that an asynchronous
buffered crossbar can emulate an output-queued switch using
any PIFO queueing discipline, not just any restricted PIFO dis-
cipline. The difficulty in making the transition from restricted
PIFO queueing disciplines to unrestricted PIFO disciplines is
that once a packet is in a crossbar buffer, there is no way for
a later arriving packet from the same input to reach the output
line card before it does, even if the queueing discipline gives it
higher priority. Reference [4] describes several techniques that
can be used to allow cell switches using buffered crossbars
to overcome this crosspoint blocking phenomenon. It seems
likely that these methods can be generalized to accommodate
asynchronous crossbars.

Still another direction to explore is how scheduling al-
gorithms that deliver strong performance guarantees when
operated with a speedup of 2 perform when operated with
a smaller speedup. Since the crossbar cost increases in direct
proportion to the speedup, there are practical reasons to be
interested in the performance of systems with smaller speedup,
even if they are not able to deliver strong performance guar-
antees. A comprehensive simulation study exploring how such
systems perform under a wide range of conditions would have
considerable practical value.

REFERENCES

[1] Anderson, T., S. Owicki., J. Saxe and C. Thacker. “High speed switch
scheduling for local area networks,” ACM Trans. on Computer Systems,
1993.

[2] Attiya, H., D. Hay and I. Keslassy. “Packet-Mode Emulation of Output-
Queued Switches,” Proc. of ACM SPAA, 2006.

[3] Chuang, S.-T. A. Goel, N. McKeown, B. Prabhakar “Matching output
queueing with a combined input output queued switch,” IEEE J. on
Selected Areas in Communications, 12/1999.

[4] Chuang, S. T., S. Iyer, N. McKeown. “Practical Algorithms for Perfor-
mance Guarantees in Buffered Crossbars,” Proc. of IEEE INFOCOM,
3/2005.

[5] Ganjali, Y., A. Keshavarzian and D. Shah. “Input queued switches: cell
switching vs. packet switching,” Proceedings of IEEE INFOCOM, 2003.

[6] Iyer, S., R. Zhang, and N. McKeown, “Routers with a Single Stage of
Buffering,” Proceedings of ACM SIGCOMM, 9/2002.

[7] Kermani, P. and L. Kleinrock. “Virtual Cut-Through: A New Computer
Communication Switching Technique,” Computer Networks, 267–286,
1979.

[8] Krishna, P., N. Patel, A. Charny and R. Simcoe. “On the speedup
required for work-conserving crossbar switches,” IEEE J. Selected Areas
of Communications, 6/1999.

[9] Katevenis, M., G. Passas, D. Simos, I. Papaefstathiou, N. Chrysos.
“Variable Packet Size Buffered Crossbar (CICQ) Switches,” Proceedings
IEEE International Conference on Communications, pp. 1090-1096,
6/2004.

[10] Katevenis, M., G. Passas. “Variable-Size Multipacket Segments in
Buffered Crossbar (CICQ) Architectures,” Proceedings IEEE Interna-
tional Conference on Communications, 5/2005.

[11] Leonardi, E., M. Mellia, F. Neri, and M.A. Marsan, “On the stability
of input-queued switches with speed-up,” IEEE/ACM Transactions on
Networking, Vol. 9, No. 1, pp. 104–118, 2/2001.

[12] Magill, B., C. Rohrs, R. Stevenson, “Output-Queued Switch Emulation
by Fabrics With Limited Memory,” IEEE Journal on Selected Areas in
Communications, pp. 606–615, 5/2003.

[13] Marsan, M. A., A. Bianco, P. Giaccone, E. Leonardi and F. Neri.
“Packet-Mode Scheduling in Input-Queued Cell-Based Switches,”
ACM/IEEE Transactions on Networking, 2002.

[14] McKeown, N. “iSLIP: a scheduling algorithm for input-queued
switches,” IEEE Trans. on Networking, 4/1999.

[15] McKeown, N., A. Mekkittikul, V. Anantharam, and J. Walrand. “Achiev-
ing 100% Throughput in an Input-Queued Switch,” IEEE Trans. on
Communications, Vol. 47, No. 8, 8/1999.

[16] Mhamdi, L., Mounir Hamdi. “MCBF: A High-Performance Scheduling
Algorithm for Buffered Crossbar Switches,” IEEE Communications
Letters, 2003.

[17] Nojima, S., E. Tsutsui, H. Fukuda, M.Hashimoto. “Integrated Services
Packet Network Using Bus Matrix Switch,” IEEE Journal on Selected
Areas of Communications, 10/87.

[18] Rodeheffer, T. and J. Saxe. “An Efficient Matching Algorithm for a
High-Throughput, Low-Latency Data Switch,” Compaq Systems Re-
search Center, Research Report 162, 11/5/98.

[19] Rojas-Cessa, E. Oki, Z. Jing, and H. J. Chao, “CIXB-1: Combined
Input-One-cell-Crosspoint Buffered Switch,” IEEE Workshop on High
Performance Switching and Routing, 7/2001.

[20] Stevens, D. and H. Zhang. “Implementing Distributed Packet Fair
Queueing in a Scalable Switch Architecture,” Proc. of IEEE Infocom,
1998.

[21] Turner, J. “Strong Performance Guarantees for Asynchronous Crossbar
Schedulers,” Proceedings of Infocom, 2006.

Jonathan S. Turner holds the Barbara and
Jerome Cox Chair of Computer Science at Washington Univer-
sity, and is the Director of the Applied Research Laboratory.
The Applied Research Laboratory creates experimental net-
working technology to validate and demonstrate new research
innovations. Professor Turner served as Chief Scientist for
Growth Networks, a startup company that developed scalable
switching components for Internet routers and ATM switches,
before being acquired by Cisco Systems in early 2000.

Turner is a fellow of both the ACM and the IEEE and
is a member of the National Academy of Engineering. He
received the Koji Kobayashi Computers and Communications
Award from the IEEE in 1994 and the IEEE Millenium Medal
in 2000. He has been awarded 30 patents for his work on
switching systems and has many widely cited publications.

12

