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Abstract—Real-time systems on non-preemptive platforms re-
quire a means of bounding the execution time of programs
for admission purposes. Worst-Case Execution Time (WCET)
is most commonly used to bound program execution time. While
bounding a program’s WCET statically is possible, computing its
true WCET is difficult. We present a new technique we callpartial
program admission,a means of statically enforcing an otherwise
untrusted assertion of WCET without adding runtime overhead,
by means of code duplication. We apply this technique to real
programs from the virtual networking arena and present the
results.

I. I NTRODUCTION

Schedulers for non-preemptive, hard real-time systems re-
quire an accurate statement of the worst-case execution time
(WCET) of programs. In cooperative environments, we can
rely on the developer to provide this information. In less
trusted circumstances, we cannot trust the developer to provide
accurate WCET.

One important domain that exhibits this problem is high-
speed virtual networking. Recent trends in network diversi-
fication rely on virtual networks hosted on specialized high-
speed network processors [1]. In the case of the Supercharged
Planetlab project (SPP) [2], virtual routers run on high-speed
network processors such as the IXP 2800 with very high target
throughputs. Allowing untrusted virtual routers presentsthe
following challenging requirements: computational budgets
are very small and very tight; the developer is not trusted;
the IXP microengines do not support timer interrupts.

The SPP platform uses a series of non-preemptive, pipelined
microengines running at 1.4 GHz. To reach a bandwidth target
of 5 Gbps on minimum-sized packets, a virtual router must
process each packet in 185 cycles per pipeline stage. Sharing
a processor safely among untrusted virtual routers requires
that we bound the WCET of each virtual router to prevent
impacting well-behaved virtual routers. Scheduling resources
fairly requires that our bound be as tight as possible. The
developer may know the true WCET of a virtual router, but
we cannot trust the assertion.

What is needed is a method forenforcingWCET assertions.
In prior work [3] we presented an overview of a method,
Partial Program Admission(PPA), for bounding execution
time by admittingpart of a program. This works as follows.
A developer supplies a program and asserts a putative WCET.
We use automated WCET analysis to estimate the WCET.
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Fig. 1. Partial Program Admission illustrated graphically. Paths within the
putative budget are retained. Paths in the CFG which exceed the budget are
excluded, whether feasible or infeasible.

As with most automated WCET analysis, we usually over-
estimate the real WCET. The execution paths of the program
for which the execution time exceeds the asserted bound
are explicitly rejected by PPA, while those paths under the
assertion are retained. We statically re-write the programto
retain the admitted paths but exclude the rejected paths.

This can be described graphically, as in Figure 1. Consider
a program as a collection of execution paths, given by the
structure of aControl Flow Graph(CFG). A simplistic way
to bound the WCET of a program is to find the longest path
through a CFG. However, this path may be infeasible — that
is, the logic of the program may render such a path impossible.
There is frequently a large gap between an estimate based on
the CFG and reality [4]. While much research has gone into
computing ever tighter WCET bounds [5], we side-step the
problem by re-writing the program to exclude the paths from
this middle ground without regard to feasibility.

We emphasize that PPA is a general method, of which
we demonstrate a specific example. A developer provides a
program and a statement about which execution paths matter
(“all paths running in 85 cycles or fewer”). We convert this
to a statement about which execution paths must be excluded



(“all paths over 85 cycles”), and remove these execution paths.
In our prior work [3], we presented a conceptual overview as

well as preliminary results over synthetic CFGs. In this paper,
we build on our prior work by presenting an algorithm that
implements PPA, along with an evaluation of the algorithm on
real applications.

In section II, we define our approach to Partial Program
Admission, and present the algorithm and the complexity
of the algorithm. In section III, we evaluate our algorithm
on a variety of synthetic and real CFGs. In section IV we
demonstrate the correctness results. We compare PPA with
alternatives in section V, discuss related work in section VI,
and future work in section VII. Finally, we summarize our
contributions in section VIII.

II. PARTIAL PROGRAM ADMISSION

Traditional admission control admits programs that are well-
behaved and rejects programs that are not. For our purposes,
a well-behaved program is one that always completes within
some known time, which we term thecycle budget. An ill-
behaved program exceeds the budget on some inputs and
should be rejected. That is, we can admit a program if the
WCET does not exceed the budget, where we define WCET
as the longest execution time of the program over all possible
inputs.

Unfortunately, perfect admission control requires accurate
WCET. In the most general case, determining accurate WCET
is exactly equivalent to the Halting Problem and is formally
undecidable. Even in realistic scenarios, WCET is often diffi-
cult to compute [6].

In PPA, we develop a finer-grained view of a program as
a collection of execution paths. We allow the developer to
assert a claim of WCET for a program. We can now define
well-behaved paths as those which execute within the claimed
budget, and ill-behaved paths as those which exceed the claim.

This view of a program allows us to enforce the claimed
WCET. When the claim is violated, we interrupt the program
and raise an exception. Since we have no preemption, we must
raise our exceptions via some static transform of the program.
Our application area is high-speed networking, which uses
very small budgets, so we cannot afford the penalty of adding
runtime checks. Instead, we examine execution paths and
intercept ill-behaved paths. Admissible paths are admitted
unmodified.

The notion of removing execution paths from a program
challenges the usual notion of program correctness. The devel-
oper has asserted a WCET bound, or budget. This, combined
with the program, is a statement of correctness. From the
developer’s perspective, a modified program is correct if all
paths from the original program not exceeding the budget are
present. The developer is responsible for the correctness of the
budget. If the developer’s assertion is accurate, the program
will run exactly as expected. An inaccurate budget is regarded
as a developer error justg as any other software defect. From
the admission perspective, the program is correct if all paths
which would have exceeded the budget are intecepted and an
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Fig. 2. Control Flow Graph.

exception is raised. If the developer is wrong or malicious,
paths which would overrun the budget are intercepted and an
exception is raised. These definitions are not irreconcilable,
and we define our correctness as the combination of the two.
Functionally, this approach is exactly the same as a timer
interrupt approach except that we may raise an exception as
soon as we know an overrun will occur; we do not need to
wait for the actual overrun.

Examine Figure 2. We represent our programs by Control
Flow Graphs (CFGs) with designated source (s) and sink
(t) vertices. Vertexs represents the last trusted code (from
a scheduling dispatcher) before beginning the execution of
untrusted code (verticesa − g). Vertex t represents the point
where we resume execution of trusted code, after the untrusted
code returns control. All execution within the CFG begins ats
and ends att. We also annotate our graph with vertex weights,
representing the cycle cost to execute the code associated with
each vertex. Becauses andt are trusted code, we account for
their execution time separately, and do not charge the untrusted
program for their execution costs.

We must observe here that our CFG is for an idealized
processor model where execution times are invariant. Thereis
no cache, branch prediction, or instruction pipeline. Therefore,
the cycle costs shown in Figure 2 do not depend on any aspect
of execution history. This processor model is realistic fora
high-speed networking application, with slight modifications
to account for an instruction pipeline. (See section III-B.)
We also assume that Control Flow Integrity (CFI) holds in
this CFG; that is, the program flow follows the CFG. The C
compiler for the IXP has restrictions which make CFI tractable
to verify.

We expect to receive as input a CFG with weight annota-
tions, special source vertexs and sink vertext, and putative
cycle budgetB. The cycle budget is an assertion of WCET
by the developer. Since we do not unreservedly trust the
developer, we must validate or enforce the budget.

The developer also provides a “time-exceeded” exception



Path Weight Result
sabdegt 6 Admissible
sabdfgt 9 Admissible
sacdegt 8 Admissible
sacdfgt 11 Exception

TABLE I
PATHS FROM CFG IN FIGURE 2 AT B = 10.

handler,x. x is written to very restrictive standards which
allow easy computation ofx’s WCET. For purposes of PPA,
we formally neglect the execution time of the exception
handler. In a hard real-time system, we must account for this
by suitably adjusting the budget for the possibility of calling
x at any time during program execution.

We can view this CFG as representing a set of execution
paths, each one a different path through the CFG from source
to sink. Our PPA algorithm recognizes those paths which
complete under the budget and admits them. Paths which
would exceed the budget are rejected. Since these paths
represent real code paths, we “reject” them by redirecting to
the exception handler. We refer to these asexception paths.
See Table I.

We generally seek to redirect exception paths at a branch
point in the CFG that will definitely cause the budgetB to
be exceeded. Since exception paths diverge from admissible
paths at such branches, we can meet our need by overwriting
the destination address of branch instructions with the address
of the exception handler. We note that this does not add any
time to admissible paths — we only modify exception paths.

Since the affected branch point was itself part of an admis-
sible path, we know that the cost of the path fromS to the
branch point does not exceedB. Since we formally neglect the
execution time ofx, no exception path can exceed the budget
B.

Our collection of admissible and exception paths can now
be viewed as a new CFG. This CFG is guaranteed to meet
our cycle budget, because all paths are of length at mostB.
Unfortunately, some degree of code duplication is necessary to
represent our new set of paths. Our PPA algorithm ensures that
we have the minimal degree of code duplication required; that
is, the new CFG is the smallest CFG that contains precisely
the desired paths.

A. Completion Sets

Examining all possible paths through a program is usually
infeasible. However, observe that paths often share the same
suffix. Once a path suffix has been examined at one budget,
any new paths that have the same path suffix may contain over-
lapping subproblems. This suggests a dynamic programming
approach, and our PPA algorithm operates in this way.

A set of path suffixes can be represented by the CFGG and
a vertexv. We will refer to this as the completion set ofv in
G, or cset(v, G), consisting of all paths fromv to t within
G. We also introduce the notion of thecsetB(v, G), the set of
all admissible paths (lengthB or less) fromv to t in G when
examined with budgetB. Then we can say

cset(v, G) =
⋃

i∈Z

cseti(v, G)

Our overlapping subproblem can now be phrased as follows:
given CFGG, vertexv, and cycles remainingR, what is the
csetR(v, G)?

To answer this, we observe that the completion sets contain
some structure. First, observe that as the budget increases,
completion sets of the same vertex can only add paths, never
lose paths. That is,csetR(v, G) ⊆ csetR+1(v, G). Second,
these path additions take place in discrete steps, wheneverR
reaches the length of a new path incset(v, G). Let us define
the setclenR(v, G) as the set of lengths of all paths in the
csetR(v, G), andclen(v, G) analogously as

clen(v, G) =
⋃

i∈Z

cleni(v, G)

Note that asR increases, completion sets only change when
R reaches a member of the corresponding clen. This allows
us to define equivalence classes of cycle budgets.

Let the clen set define a set ofintervals between adjacent
ordered elements. For example, using the CFG in Figure 2,

clen(S, G) = { 6, 8, 9, 11 }
yields:[−∞, 5] [6, 7] [8, 8] [9, 10] [11,∞]

For convenience, we will treat these intervals as sets of
contiguous integers, with the usual set operations. We willalso
define scalar addition to an interval as shifting the endpoints.
That is, [i, j] + k = [i + k, j + k].

All completion sets for budgets within the same interval
will be identical. Given theclen sets, we can now answer
our overlapping subproblem. If we have already computed a
csetR1

(u, G), and we wantcsetR2
(u, G) whereR1 and R2

are in the same interval, we have precomputed our answer.
Since the completion sets are equal, we can represent these
completion sets by the same vertex in our transformed CFG.

Having the completeclen sets for each vertex in the CFG
(and therefore the intervals as well) will allow us to compute
our transformed CFG directly.

B. Computing theclen Sets

Completion sets of vertices are built directly from the
completion sets of successor vertices in the CFG. Given vertex
u with successorsv1, . . . , vk with known completion sets, we
can prependu onto each path from eachcset(vi, G) to find
the paths incset(u, G).

Since clen(u, G) is just the set of lengths of paths in
cset(u, G), we can also computeclen(u, G) from known
clen(vi, G) sets. For each value in eachclen(vi, G) we
increment byw(u) and add it toclen(u, G).

Finally, since our sink vertext has no successors, we have a
basis completion set:cset(t, G) = {t}, and basisclen(t, G) =
{0}. This allows us to compute allclenB sets as in Figure 3. If
we implement theclen sets as bit vectors, the time complexity
is O(mB).



initialize clen(u, G) = ∅ for all u
initialize pending = [(t, 0)]
while pending not emptydo

Select a pair(v, j) from pending and remove it
for all edges(u, v) in G do

if j + w(u) /∈ clen(u, G) andj + w(u) ≤ B then
Add j + w(u) to clen(u, G)
Add (u, j + w(u)) to pending

end if
end for

end while

Fig. 3. Computingclen sets.

C. Computing the Transformed CFG

The clen sets define all of the intervals for each vertex.
TheclenB sets are equivalent so long as we never considerR
values that exceedB. We can define a new graph,D, which
tracks the remaining cyclesR at each vertex by the interval
into which eachR would fall.

We are interested in the equivalence classes of vertices with
identical completion sets. For this purpose, we will name our
vertices inD by a 2-tuple of the vertex and interval, where
the interval containsR. Notationally, we will refer tou[I], or
when using the interval endpoints,u[i, j].

Given G = (V, E), let us defineD = (V ′, E′) as follows.

V ′ = {u[I] | u ∈ V, I defined byclen(u, G)}

E′ = {(u[I], v[J ]) | (u, v) ∈ E andI ⊆ J + w(u)}

If we apply this to the CFG of Figure 2, we get the graph in
Figure 4. This is our dynamic programming graph, which we
can use to determineR-bounded completion set equivalence.

Observe the following key properties, for which we defer
proofs to Section IV. First, paths inD correspond directly
to paths in G. Second, given a valueR and vertexu[I]
such thatR ∈ I, those paths fromu[I] ending att[0,∞]
have length not exceedingR, while those paths ending at
t[−∞,−1] have length exceedingR. That is, those ending at
t[0,∞] correspond to members ofcsetR(u, G). This allows
us to immediately determine when all paths from a vertex
exceed the budget, yielding our exception paths. That is, for
any value R in the interval of an exception vertexu[I],
csetR(u, G) = ∅. Finally, givenu ∈ V, R1, R2 in the same
interval, thencsetR1

(u, G) = csetR2
(u, G), and inversely.

Recall that our goal is to produce a new CFGG′ from G
and B where all paths of lengthB or less are included; all
paths of length exceedingB are intercepted. That is, we want
a new CFG wherecsetB(s, G) is admitted and all other paths
in cset(s, G) raise exceptions.

Let H be the interval ats which containsB. From the
properties ofD, we know that all paths froms[H ] to t[0,∞]
have lengthB or less; all paths froms[H ] to t[−∞,−1]
have length exceedingB. Further, we can recognize the exact
branch at which a path is certain to exceedB.

Exception Vertices

s[−∞, 5] 0

a[−∞, 5] 2

b[−∞, 3] 1 c[−∞, 5] 3

d[−∞, 5] 1

e[−∞, 1] 1 f [−∞, 4] 4

g[−∞, 0] 1

t[−∞,−1] 0 t[0,∞] 0

s[6, 7] 0

a[6, 7] 2

b[4, 6] 1

d[3, 5] 1

e[2,∞] 1

g[1,∞] 1

s[8, 8] 0

a[8, 8] 2

c[6, 8] 3

s[9, 10] 0

a[9, 10] 2

b[7,∞] 1

d[6,∞] 1

f [5,∞] 4

s[11,∞] 0

a[11,∞] 2

c[9,∞] 3

Fig. 4. Dynamic programming graphD generated from Figure 2. Exception
vertices are those vertex/interval pairs with empty completion sets.

Since our goal is to generate a program which raises an
exception as early as possible, and which returns control to
the trusted code immediately after, we must modify our graph
D. Let D′ be a new graph where all exception vertices are
coalesced into a single vertex,x, and add an edge fromx to
t[0,∞]. See Figure 5.

We can now generate our transformed CFGG′ as simply
those vertices ofD′ reachable froms[H ]. One algorithm to
do so inO(m′) = O(mB) is in Figure 6. For this, we require
a vector for each vertexu which records the interval defined
by clen(u, G) corresponding to a given cycle countR < B.
Using this, we can find the intervalJ that containsI − w(u)
in constant time. We can compute this vector inO(nB) =
O(mB) time using the values ofclen(u, G).

Following our running example,G′ is shown in Figure 7.
An alternative variation to computeG′ directly fromG can

be implemented by recursive descent augmented by memoiza-
tion, taking the same worst-case time complexity. As expected,
the sparse memoization yields a speed improvement.

D. Complexity

There are two types of complexity that matter for this
algorithm. First, we have thecomputationalcomplexity of
the algorithm. Second, we have thespatial complexity of the
generated code.

This algorithm is intended for static analysis of program
code submitted for admission. The algorithm will run once
at admission time and then (if admitted) never again. The
generated code will be installed and take execution store for
the lifetime of the deployment. Thus, while we need the
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t[0,∞] 0

s[6, 7] 0

a[6, 7] 2

b[4, 6] 1

d[3, 5] 1

e[2,∞] 1

g[1,∞] 1

s[8, 8] 0

a[8, 8] 2

c[6, 8] 3

s[9, 10] 0

a[9, 10] 2

b[7,∞] 1

d[6,∞] 1

f [5,∞] 4

s[11,∞] 0

a[11,∞] 2

c[9,∞] 3

Fig. 5. Dynamic programming graph used by algorithm of Fig. 6on Fig. 2.x
takes the place of vertices associated with lower-unbounded intervals, where
the corresponding completion set is empty. For example,cset4(c, G) = ∅

and soc[−∞,5] is replaced byx. The edgex → t[0,∞] is included to
return control to trusted code after an exception.

given D′ = (V, E), S[H ]
initialize V ′ = {S[H ], X, T [0,∞]}
initialize E′ = {(X, T [0,∞])}
initialize pending = [S[H ]]
while pending not emptydo

Select a vertexu[I] from pending and remove it
for all edges(u, v) in G do

let J be the interval ofclen(v, G) containingI−w(u)
if v[J ] is an exception vertexthen

Add (u[I], X) to E′

else if v[J ] /∈ V ′ then
Add v[J ] to V ′

Add v[J ] to pending
Add (u[I], v[J ]) to E′

end if
end for

end while

Fig. 6. Computing CFGG′.

computational complexity to be tractable, we consider spatial
complexity to be the more important factor.

We have already addressed computational complexity,
which is O(mB).

The code is emitted directly fromG′, so the spatial com-
plexity of the emitted code is proportional to the complexity
of the vertex set ofG′.

Verticesu[I] in G′ each correspond to a vertexu in G. We
will refer to these as copies ofu and consider the number of
copies of each vertex inG which can exist inG′.

s[9, 10] 0

a[9, 10] 2

1 b[7,∞] c[6, 8] 3

d[3, 5] 11 d[6,∞]

1 e[2,∞] f [5,∞] 4

1 g[1,∞]

t[0,∞] 0

x

Fig. 7. Bounded execution graphG′ from Figure 2 atB = 10.

Spatial complexity of the copies ofu depends upon three
factors: the number of paths froms to u, the number of paths
from u to t, and the budgetB.

At each vertex inG, we add a copy toG′ corresponding
to each interval that is bothpresentand reachablefrom the
sources by paths of cost no more thanB.

Individual budget values at vertexu are divided into equiv-
alence classes by the weight of each path incset(u, t). More
precisely, we have exactly one interval for each path fromu
to t of distinct cost, plus one for exceptions. Therefore, the
number of paths of distinct cost fromu to t forms an upper
bound on the number of copies ofu and is exponential in the
branching factor ofG.

Each interval corresponds to some numbers of cycles re-
maining at this point in the CFG. For a copyu[I] to be added
to G′, the associated intervalI must bereachable: there must
be a pathρ from s to u such thatB−w(ρ) is within the interval
I. Therefore, the number of paths of distinct cost froms to u
is an upper bound on the number of copies ofu, and is also
exponential in the branching factor ofG.

Since vertices inG′ are of the formu[I], intervals have
minimum size of1, and we only need consider intervals below
the budgetB, the number of copies per vertex is upper-
bounded byB.

Thus, our spatial complexity per vertex is upper-bounded
by the minimum of three factors: the number of paths tot,
the number of paths froms, and the budgetB. That is,

#copies of vertexu = O
(

min
(

#pathss u,
#pathsu t,
B

))
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III. E VALUATION

We have evaluated the algorithm on a series of synthetic
CFGs and CFGs from real code. The results on synthetic CFGs
have been previously published in [3]; we briefly recapitulate
these results here. We also describe here our examination
of the algorithm on real CFGs from a network processing
environment.

A. Results on Synthetic CFGs

Our synthetic CFGs were generated by a series of vertex
substitutions that parallel grammar production rules in a C-
like language. These CFGs were restricted to acyclic cases and
included simple statements,if, if-then-else, and switch/case
statements. The mean size of the CFGs was 3600 instruc-
tions. This is more than double the largest real program we
studied, and provides a useful bound on performance on larger
programs.

Figure 8 represents the results of running the algorithm
on 1000 randomly generated synthetic CFGs. We show the
resulting distribution of the maximum code duplication factor
required for each synthetic CFG over all possible budgets.
The vast majority (82%) require a maximum duplication factor
from 1–2, with an average maximum of 1.6. Large duplication
factors are actually very rare; one pathological case required a
duplication factor of 23.5. Subsequent analysis of this example
showed that it was composed almost exclusively of a series of
nestedswitch/casestatements.

Results on cyclic synthetic CFGs are not meaningful in the
absence of a WCET assertion. As demonstrated in subsec-
tion II-D, the code duplication is linear in the budget, and our
synthetic evaluations confirmed this. Without a known WCET
of interest, the maximum duplication for cyclic CFGs cannot
be evaluated.

B. Adaptation to Real Code

Our algorithm has been designed for an idealized processor
model which lacks a number of real-world details. In our

analysis on real code, we adapted the base algorithm to run
on assembly code for the IXP 2800 architecture.

The IXP 2800 architecture uses a 4-stage pipeline. The
pipeline requires that we account for pipeline aborts on
branches. This can be done in a straightforward manner, by
inserting dummy vertices into the CFG. These dummy vertices
carry no actual code, but have a cost equal to the pipeline abort
costs of the branch. We inserted one of these dummy vertices
into each flow transfer edge with a pipeline abort cost.

The IXP 2800 supports up to 8 hardware thread contexts
per processor. Context switching fragments CFGs and leads to
greater difficulties in WCET analysis [7]. In this evaluation,
we ignore the problem of inter-thread dependencies. Our CFGs
are examined under a strictly single-threaded model.

The IXP 2800 also has a memory hierarchy of local regis-
ters, very fast local memory, off-chip SRAM banks and off-
chip DRAM banks. There is no automated data or instruction
cache; all memory management is manual. Asynchronous
memory access instructions allow for masking of high memory
latencies. These asynchronous memory access instructions
typically allow a program to start a memory read, perform
some processing, and then context-switch to await the results.
We neglect “swapped out” memory latency in our evaluation,
although we consider this an important detail for future work.

We must also ensure that our CFG is correct, that CFI holds
for our analysis. Fortunately, the C compiler and architecture
for the IXP have some fundamental limitations that make this
relatively easy. First, there is no stack. Return addressesare
stored directly in registers. In consequence, there is alsono
recursion. We can ensure that returns from functions are sane
just by verifying that the return register is untouched. Second,
there are no function pointers, so all function calls are explicit
and immediate. If we do not allow inline assembly, then CFI
holds automatically. To allow inline assembly, we can simply
interdict constructions which are difficult to prove correct.

C. Sample Code

Our sample code comes from high-speed network proces-
sor modules written for the Supercharged Planetlab (SPP)
project [2] and plugins for the Open Network Laboratory
(ONL) [8]. See Table II.

Our list of programs is as follows.Count is a simple
packet counter.Nstats gathers statistics on the proportion
of different protocols within the packet stream.Port_count
and port_reporter are a matched pair;port_count
tracks the TCP and UDP ports seen in the packet stream, and
port_reporter reports this information to a centralized
store. These programs were all student-written.
Ipv4_parse parses IPv4 headers, which may be encap-

sulated in tunnel headers, and performs RFC 1812 router
verifications.Ipv4_hdrfmt_encap1 rewrites IPv4 head-
ers for next hop forwarding, including encapsulation within
UDP tunnels.I3_parse andi3_hdrfmt_encap perform

1We manually analyzed a similarly-named program in [3].
Ipv4_hdrfmt_encap is distinct and does significantly more work.



Program Size Cyclic?
(Instructions)

count 23 No
nstats 368 No

ipv4_parse 614 No
ipv4_hdrfmt_encap 497 No

i3_parse 734 No
i3_hdrfmt_encap 582 No

port_count 229 Yes
port_reporter 133 Yes

TABLE II
SAMPLE PROGRAMS FOR EVALUATION.
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Fig. 9. The results of running our PPA algorithm on a series ofprograms at
their respective real WCETs. All programs were fully inlined before analysis.
All programs were acyclic.

analogous tasks for theInternet Indirection Protocol(i3) [9],
a novel architecture for using indirection as a means of
giving users greater control over the traffic they receive. These
programs were written as part of the SPP project and were
developed to rigorous standards of performance. Therefore,
most function calls were inlined, and all loops were unrolled
for speed.

To examine this code with our algorithm, we needed to
make a number of changes to the programs. First, our al-
gorithm only works on CFGs that do not contain function
calls. Therefore, all function calls were inlined. Second,some
code contained inter-thread dependencies. We have changed
these programs to conform to a single-threaded model. Third,
our initial examination showed that cyclic code resulted in
substantial duplication, so we have analyzed the cyclic code in
both the original state and after unrolling all loops to produce
acyclic code. Finally, we have removed debug code which
would not be present in a production system.

We divide our presentation as follows. First, we present the
results on acyclic programs. We follow this with the cyclic
programs, first analyzed as cyclic programs, then analyzed
after unrolling all loops. Finally, we take a detailed look at
the results on one program over a range of budgets.

1) Acyclic Programs: Figure 9 shows the results of the
analysis on acyclic programs. All sizes have been normalized
to the inlined program, including the original program size.

We manually analyzed these programs for real WCET, and
asserted this as a budget in our PPA algorithm. For the first
three programs, the WCET was the length of the longest path
in the CFG. In these cases, the program could be admittedin
toto, with no modification at all.

For the next three programs, the real WCET was shorter
than the longest program path. In these cases, some duplication
was necessary to differentiate admissible and exception paths.

The ipv4_hdrfmt_encap analysis brings out an inter-
esting point. We define the WCET as the largest execution
time over all possible inputs. However, we have information
about the inputs that is not available in either the CFG or
theipv4_hdrfmt_encap program. The compiler generates
memory accesses without assumptions about memory align-
ment. In this case, we know that the inputs will be such that
memory accesses will be properly aligned. Therefore, despite
the fact that these paths are feasible over all inputs, we do
not regard these inputs as possible. This reduces the WCET
to 192 cycles. Even a perfect WCET analysis tool would be
unaware of this domain knowledge. Working solely from the
ipv4_hdrfmt_encap program, the correct WCET would
be 203. In this respect, our PPA has capabilities not provided
by perfect WCET-based admission control.

2) Cyclic Programs:Two programs contained loops. These
were short, static iteration count (4) loops used to traverse
small tables.

Pure tree-based WCET analysis is unable to bound cyclic
code at all, as no iteration bounds are available. A common
solution to the problem is to provide language constructs
for static iteration bounds on loops, whereupon the analysis
proceeds by assuming maximum iterations [4]. There are also
approaches to automatically bounding loop iterations [10]. In
our analysis, we do not provide any iteration bounds — the
number of iterations is ultimately bounded only by the cycle
budget.

This has the effect of implicitly unrolling each loop to the
limit of the budget, resulting in significant code duplication.
Nevertheless, we can still produce bounded programs even in
the absence of any iteration bounds at all. See Figure 10.

In the case of theport_reporter program, the du-
plication factor is substantial, 13.98. However, even at this
factor, the transformed program is only 3,048 instructions.
This readily fits into the IXP 2800 instruction store (8,192
instructions).

The duplication on theport_count program is more
reasonable at less than 6. The duplication factor here is due
mostly to structural characteristics of the program ratherthan
the budget. In particular, a loop does not prohibitively increase
program size if the rest of the program path lengths are in a
small range, and the WCET assertion is accurate.

3) Unrolled Programs:Despite the fact that our PPA algo-
rithm works on unbounded loops, we examined the results of
unrolling the loops to decrease the duplication. This brought
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Fig. 11. The results of running our PPA algorithm on a pair of unrolled
cyclic programs at their respective real WCETs. All programs were fully
inlined before unrolling, and fully unrolled to an acyclic configuration before
analysis.

the results back into line with the rest of the acyclic programs.
See Figure 11. After unrolling, theport_reporter

program’s WCET was equal to the length of the longest path
in the CFG, resulting in admission without duplication. For
port_count, some duplication was still necessary.

Our goal is to share a processor between bounded-execution
programs. It is a significant result that we can fit all 8
transformed acyclic programs (7,018 total instructions) into the
same IXP 2800 instruction store (8,192 capacity) with more
than enough room remaining for a scheduler.

D. Analysis with Range of Budgets

When the WCET is equal to the length of the longest path in
the CFG, we admit the programin toto, with no path pruning
and no consequent duplication. When the WCET is shorter,
we have some degree of duplication. We now explore the
degree of possible duplication over a range of budgets for
the ipv4_parse program.

Observe Figure 12. This is a fairly typical duplication
curve for an acyclic program. The longest program path
was 414 cycles, and at this budget or higher, no duplication
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Fig. 12. Code duplication ofipv4_parse on various budgets. The real
WCET (414) is equal to the longest path, so there is no code duplication at
this budget.

arises. Below this value, path pruning requires duplication to
differentiate cycles remaining to successor vertices. Ourworst
possible duplication factor, 16.66, occurs at 320 cycles.

Below 190 cycles, we begin to prune all paths containing
certain vertices. We no longer admit any copies of these
vertices. Below 137 cycles, we have pruned so many paths
that the resulting program is smaller than the original, andat
64 cycles, all paths are rejected.

For completeness, we also present the duplication curve on
a cyclic program,port_count. See Figure 13.

In this case, there is no longest path, and the duplication
factor continues to grow linearly in the budget. Asserting
an accurate WCET becomes a crucial part of mitigating the
duplication factor. In this case, the real WCET is 268, for a
duplication factor of 13.98.

The same discussion at low budgets applies to cyclic pro-
grams. Below 123 cycles, we begin to prune all copies of some
vertices; that is, there are no admissible paths which include
these vertices. At 112 cycles, we emit a smaller program than
the original, and at 33 cycles no paths are admitted.

IV. CORRECTNESS

Our demonstrations proceed as follows. First, we re-state the
properties of the graphD from section II-C in mathematical
terms. These are proven as lemmas. We follow this with the
important results: the new program iscomplete, in that all
paths which the developer requested are present; the program
is bounded, in that all paths are of length at mostB. These
two results taken together meet the correctness definitionswe
gave in section II. Finally, we close with a proof that the new
program is ascompactas possible.

Lemma 1. GivenG = (V, E), u, v ∈ V, (u, v) ∈ E, I defined
by clen(u, G), then there is exactly one intervalJ defined by
clen(v, G) that intersectsI − w(u).

Proof:
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Fig. 13. Code duplication of TCP/UDP Port Counter program onvarious
budgets. The real WCET is 268, bounding our final duplicationat 13.98

By definition, intervals at the same vertexv cover the entire
set of integers. Also by definition, intervals are non-empty.
Therefore, there must exist at least one intervalJ = [j, k]
defined byclen(v, G) such thatJ intersects any other interval,
including I − w(u). Without loss of generality, letJ be the
largest such interval (greatest lower boundj) at v.

Let i = min(I).
If j > i − w(u), then there exists a pathu  t in G of

length j + w(u), which implies thatclen(u, G) defines an
interval lower-bounded byj + w(u). But because intervals at
the same vertex are disjoint, this would imply thatJ cannot
intersectI − w(u). Therefore,j ≤ i − w(u).

Theclen(v, G) can define no otherJ ′ = [j′, k′] 6= J which
also intersectsI − w(u), becausej′ < j ≤ i − w(u).

Corollary. Given the same situation as in Lemma 1,I −
w(u) ⊆ J .

Proof:
There is exactly one intersection,J . If I −w(u) 6⊆ J , then

some other interval atv would intersect the remainder ofI −
w(u).

Next we demonstrate thatcseti(u, G) “matches” the paths
in u[I] t[0,∞] in D. By matcheswe mean that if we strip
the intervals from the vertices in the paths inD, the sets of
paths are identical. This requires a series of lemmas.

We introduce a new notation,δ(u, v) to be the shortest
distance from vertexu to vertexv in G. Distance refers to
the sum of the weights of the vertices in the path.

Lemma 2. GivenG = (V, E) and D = (V ′, E′) with u[I] ∈
V ′ and i = δ(u, t) ∈ I, and letP (u[I]) be the set of paths
u[I]  t[0,∞] in D shorn of intervals, thencseti(u, G) ⊆
P (u[I]).

Proof:
We proceed by induction on path lengths.
Basis. Path length of one,u = t. Then immediately from

the definitions,i = δ(t, t) = 0, I = [0,∞], P (t[0,∞]) =
{t} = cset0(t, G).

Inductive Step. Given pathρ ∈ cseti(u, G) where i =
δ(u, t), let the second vertex ofρ be v. This implies that
(u, v) ∈ E, and δ(v, t) = i − w(u). Let ρ′ be the path
whenu is removed fromρ. Thenρ′ ∈ cseti−w(u)(v, G). Let
our inductive hypothesis be thatρ′ ∈ P (v[J ]). Then by the
definition of D, edge(u[I], v[J ]) ∈ E′, since J intersects
I − w(u). Therefore,ρ ∈ P (u[I]) as well.

Lemma 3. GivenG = (V, E) andD = (V ′, E′) with u[i, j] ∈
V ′, and letP (u[i, j]) be the set of pathsu[i, j] t[0,∞] in
D shorn of intervals, thencseti(u, G) ⊆ P (u[i, j]).

Proof:
First, note that fori < δ(u, t) this is trivially true, as

cseti(u, G) = ∅. We now consideri ≥ δ(u, t), and we
demonstrate by induction oni.

Basis.i = δ(u, t). This is exactly Lemma 2.
Inductive step. Let ρ be a path incseti(u, G), and letv

be the second vertex alongρ. (If there is no second vertex,
thenu = t, ρ = t which matches the patht[0,∞] in D for all
i ≥ 0.) Then letρ′ be the path whenu is removed fromρ. Then
ρ′ ∈ cseti−w(u)(v, G). Let our inductive hypothesis be that
ρ′ ∈ P (v[J ]). Then by the definition ofD, edge(u[I], v[J ]) ∈
E′, sinceJ intersectsI − w(u). Therefore,ρ ∈ P (u[I]) as
well.

We can now state our completeness theorem, which proves
that the program meets the developer’s perspective of correct-
ness.

Theorem 1 (Completeness). All execution paths that do not
exceedB are present in the transformed CFGG′.

Proof:
By definition, all paths inG′ are inP (s[H ]) if B ∈ H , so

we can state this theorem mathematically ascsetB(s, G) ⊆
P (s[H ]). This is immediate from Lemma 3.G′ is actually
generated fromD′ (see Section II-C), which is a modified
version of D. However, P (s[H ]) in D′ is a superset of
P (s[H ]) in D, as we have only added the exceptions paths.

We can also demonstrate the converse by a similar set of
lemmas. That is, no paths have been incorporated intoD or
D′ (and thereforeG′) except for those ofcsetB(s, G) and the
exception paths. We omit these proofs, as we can resort to
an argument that the vertices of CFGG′ have meaning. Any
path arbitrarily added toG′ would be unreachable code; there
would be no flow transfer to match the edge by which the
extra path was added.

Theorem 2 (Boundedness). All paths in the transformed CFG
G′ have lengths less thanB.

Proof:
All exception paths diverge from admissible paths. The

exception handler is treated as having no cost. Thus, the
exception path length is not longer than at least one admissible
path, with lengthB or less.



Theorem 3 (Compactness). There is no other graph meeting
Thms 1,2 with smaller size thanG′. That is,G′ is (one of)
the most compact program(s) meeting our requirements.

Proof:
This proof maps the CFGG′ onto a Deterministic Finite

Automaton (DFA) accepting strings isomorphic to paths in
the completion set, then applies the Hopcruft-Ullman algo-
rithm [11] to demonstrate thatG′ is maximally compact.

When we speak of program size, we refer to the amount of
code. Hopcruft-Ullman counts the number of states. Therefore,
to apply the algorithm directly, we must break our vertices in
G into single-instruction vertices. For purposes of our PPA
algorithm this is purely cosmetic.

Given G = (V, E), D′ = (V ′, E′), andG′ defined as that
portion of D′ reachable fromS[H ] whereB ∈ H , we can
construct DFAM = (Q, Σ, δ, q0, F ) as follows. (Note that
we now deal withD′ rather thanD.)

The statesQ of M are taken directly from the verticesV ′

of D, with a additional trap stateqT for undefined transitions
and one explicit accept state,qF .

The alphabetΣ is taken from the edgesE of G.
Our transition functionδ is defined as follows.

δ(u[I], (u, v)) =







































v[J ] If (u[I], v[J ]) ∈ E′

x If (u[I], v[J ]) 6∈ E′ and
(u[I], x) ∈ E′

qF If u[I] = t[0,∞] and
(u, v) = (t[0,∞], qF )

qT Otherwise.

q0, our start state, is defined as the root ofG′, S[H ].
Our set of accepting statesF = {qF }.
This DFA M accepts sequences of edges. It is easy to

show by induction that the paths as sequences of edges are
isomorphic to paths as sequences of vertices. Following the
properties ofD′, we know thatM acceptscsetB(s, G), with
the rest of the paths (if any) incset(s, G) replaced with
exception paths.

We can now directly apply the Hopcruft-Ullman algorithm.
This consists of two phases: first, we remove all vertices not
reachable from the start state. This is exactly our construction
of G′ from D′.

Second, we partition the states of the DFA into equivalence
classes based on strings accepted. Two states are equivalent if,
were the DFA started in these states, they each accept exactly
the same set of strings. By our construction ofD′, we know
that each stateu[i, j] accepts strings corresponding to paths in
cseti(u, G) and the related exception paths. These are already
in equivalence classes via intervals; each state inM will accept
a different set of strings.

Finally, we construct the new, minimized DFA using the
equivalence classes as states in the new DFA. Since we have
exactly one state in each equivalence class, the minimized DFA
is isomorphic toG′.

Therefore,G′ is minimal.

V. A LTERNATIVES

PPA is one of several approaches to solving timer overrun
problems, each of which has different trade-offs. In general,
there are 4 approaches to the problem: timer interrupts, instru-
mentation of programs with runtime checks, WCET analysis
with whole program admission, and PPA. We will compare
these approaches, with recommendations on when to use each
approach.

Timer interrupts are the most common approach. The sched-
uler sets a hardware timer and calls the untrusted code. If
the code completes within the alotted time, the timer is reset
and the next program can be called. Otherwise, a hardware
interrupt returns control to the scheduler. This requires that
the hardware support low overhead timer interrupts, but has
the advantage that we do not need any low-level architectural
knowledge at all. When available, this is usually the best
approach.

Instrumenting programs with runtime checks of time re-
maining is straightforward and requires minimal understanding
of program logic or underlying architecture. Unfortunately, it
adds some additional cycles to the execution time. It also adds
a (small) amount of code. This approach is best when WCET
analysis is exceptionally difficult and some overhead can be
tolerated.

WCET analysis uses automated analysis of a program to
estimate the WCET. Having this estimate, we can directly de-
termine whether to admit or deny the program. This approach
requires that our estimates are reasonably tight, or admission
control becomes overly pessimistic. Obtaining tight estimates
of WCET usually requires substantial time and architectural
information, and implementations are often difficult. We need
to solve the dual problem of single-instruction WCET analysis,
which depends upon the underlying architecture, and arbitrary
program behavior. This approach is usually best when budgets
are loose and some pessimism in admission control will not
impact the application greatly.

PPA works on a path-by-path basis to support developer
assertions of WCET. This places a burden on the developer
to estimate the WCET, although there is no requirement that
the estimate be tight. It also requires underlying architectural
information to solve the single-instruction WCET analysis, but
avoids the need to understand program behavior. It has the
advantages of adding no execution time, but the disadvantage
of increasing program size. This is best when budgets are
small, reducing duplication, and tight, where runtime checks
or traditional WCET analysis may be inappropriate.

VI. RELATED WORK

We have already discussed other approaches to the same
problem of bounding execution time. Here, we discuss re-
search that uses similar underlying techniques.

Duplicating paths to exploit different characteristics along
the path history is not new. In [12], paths are duplicated so that
data flow problems, unsolvable along one path, can be solved
in the duplicate. This allows superior compiler optimizations



Method Use when
Timer Timers are available and have low overhead
Runtime Checks Overhead is acceptable
WCET Hardware model is tractable; and program

behavior can be fully understood or budgets
are loose

PPA Budgets are small and tight, hardware model
is tractable

TABLE III
COMPARISON OF APPROACHES TO TIMER OVERRUN.

along heavily used paths while bypassing infrequent paths
which cannot be so optimized.

PPA is closely related to, but distinct from, WCET analysis.
We only estimate WCET of paths until we find that a path
will exceed the budget, and intercept that path. In this way,
we sidestep the problem of path feasibility which WCET
must address. However, since we rely on our estimate to
exclude paths, the per-path estimate must be tight or we may
exclude safe paths in violation of the developer’s correctness
requirements. In traditional WCET analysis, overestimating a
single path can only lead to overestimation of the total program
WCET.

PPA is also distinct in that even a perfect WCET analysis
would not fill all of the uses of our PPA technique. Consider
the case ofipv4_hdrfmt_encap, where the developer has
access to preconditions which might not be available to a
WCET analysis. These preconditions, on memory alignment,
render the longest path infeasible. Unless a way exists to
express these preconditions to the WCET analysis tool, we
will always overestimate WCET. PPA allows the developer to
assert the WCET directly.

Distinctions aside, PPA is founded on simplistic WCET
analysis techniques, and improvements to the underlying es-
timation may also improve PPA performance. WCET anal-
ysis falls mostly into two distinct methods, tree-based path
enumeration [4] and implicit path enumeration [13]. In tree-
based path enumeration, depth-first examination of the CFG
combined with a pessimistic “worst-of-successor” tally of
instruction times yields a fast estimate of WCET. In the purest
form, no effort is made to avoid counting infeasible paths,
so this method typically overestimates WCET significantly.
Extensions to limit counting of infeasible paths [14] typically
increase analysis time unacceptably. This renders most tree-
based techniques unsuitable for admission control. While our
analysis portion is most closely related to the tree-based tech-
niques, we use the information to reject paths, not programs.
Therefore, we do not reject complete programs because one
long path cannot be shown to be infeasible.

Implicit path enumeration uses information from the de-
veloper on branch constraints to develop a much tighter
estimate of WCET. We regard the developer as untrusted, and
cannot rely on developer assertions for safety. Implicit path
enumeration is most useful in PPA when a developer uses it
to determine real WCET, prior to program submission.

Transforming programs to make demonstrations of WCET

easier are also not new. Closest in spirit and functionality
is the Single-Path approach to writing temporally predictable
code [15]. The single-path approach is a variant of WCET
analysis where we remove data-dependent branches from a
program to yield a program with one execution path. Once
the program is reduced to a single path, WCET analysis is
trivial.

Data-dependent branches are removed by executingboth
sides of the branch and retaining only the correct result using
predicated instructions. Loops are retained but convertedfrom
data-dependent iteration counts to fixed iteration counts.The
results of unnecessary loop iterations are discarded. Both
transformations have the net result of increasing WCET by
some amount.

In contrast, our technique increases code size by duplicating
partial paths as a means of retaining path history, while WCET
is untouched.

We see these techniques as complementary, applicable to
different arenas. Given a very small cycle budget, the overhead
of any added runtime is unacceptable. The single-path ap-
proach would penalize programs significantly. Since our code
duplication is bounded by the budget, this environment also
keeps the duplication factor small.

Given larger budgets, the situation is reversed. Code du-
plication can balloon, while the addition of a few cycles of
runtime in the single-path approach is a minor cost.

We believe that a synthesis of the two techniques could
be interesting. Our code duplication is bounded by branching
factors which the single-path approach can limit; the WCET
penalty of the single-path approach could be mitigated by
some code duplication.

VII. F UTURE WORK

Our priority in future work is techniques to reduce the dupli-
cation factor, especially for cyclic programs. The algorithm as
presented here substitutes code duplication for knowledgeof
path feasibility. We believe that we can incorporate feasibility
information in two ways.

First, we can incorporate feasibility information from a
trusted source by representing infeasible paths as regular
expressions within the CFG in a manner similar to the work
in [14].

Second, we can incorporateuntrustedfeasibility information
represented in the same way, by taking developer assertions
as statements of correctness.

Recall that the general PPA method involves transforming
a program to remove interdicted paths, while retaining paths
which the developer requires. In current work, all paths are
strictly classified into one category or the other.

Labeling infeasible paths allows a middle ground, where
some paths are acceptable but not required. This allows
flexibility in the transformation which could be used to further
reduce code duplication. Provably infeasible paths can be
retained or omitted without impacting safety. Assertions from
the developer may not be trusted, but amount to a statement
from the developer that “I consider this path optional. Keep



it or throw it away as you please.” This introduces the notion
of optional paths, consisting of the provably infeasible paths
and the admissible developer-flagged paths. The new problem
becomes one of retaining the optional paths which result in
the smallest transformed program.

These techniques can apply to both acyclic and cyclic code,
although our main interest is in cycles. In the case of a cycle,
techniques such as in [10] could provide trusted bounds on
loop iterations. Where these techniques fail, the developer
can still assert, “This loop iterates 3 times; I don’t care if
an exception is raised on a fourth iteration because it won’t
happen.”

A similar difficulty arises in applying PPA to programs
which contain function calls. A function call has no place
within a CFG. In our current work, we have inlined all function
calls, as is common practice in packet processing code when
optimizing heavily for speed. However, we believe that this
difficulty can also be overcome by extending our base PPA
algorithm to use infeasible path labels to assert valid return
addresses.

Another difficulty arises when considering code emission.
The bounded CFGs we generate cannot be directly emitted
as executables. Our method occasionally yields CFGs where
multiple copies of a vertex “fall through” to the samesingle
copy of a subsequent vertex. Since this is not possible in real
executables, additional research is necessary to convert to an
executable form. We believe that a combination of techniques
can surmount this difficulty. Limited additional duplication
can solve most multiple fall-through cases. In other cases,we
expect to be able to prove that the insertion of an explicit
branch instruction will not violate our bounds.

Our current implementation does not perform code emission
from bounded CFGs. We plan to develop a complete system
as a proof of concept, from real code to executable code.

In our real system, we expect to examine other timing
factors beyond computation. The IXP 2800 processor supports
primitives for asynchronous memory I/O, along with up to 8
hardware thread contexts with single-cycle context switches.
Our programs usually have both tight computational cycle
budgets as well as larger, coarse-granularity, memory latency
budgets. In practice, our system will need to demonstrate
the ability to bound memory latency budgets as well as
computational budgets.

VIII. C ONCLUSION

We have demonstrated a new technique for admission
control of untrusted programs, Partial Program Admission.
The “all or nothing” limitation of traditional admission control
requires that we prove that an entire program is safe before
admission, even when the “unsafe” parts correspond to infea-
sible execution paths. Under PPA, we can admit just those
portions of the program which are safe, and exclude portions
of the program where safety proofs are impractical.

We have also demonstrated an implementation of a PPA
algorithm for bounding the execution time of untrusted pro-
grams, and have proven its utility on real programs from the

high-speed networking context. We also enforced our budgets
with no runtime overhead.

Finally, we have demonstrated two additional advantages
of PPA over traditional admission control based on WCET
analysis. First, no knowledge beyond the control flow structure
is needed. Second, we can bound programs at budgets below
the analytical WCET, such as when input restrictions render
some paths infeasible.
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