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Abstract—Real-time systems on non-preemptive platforms re-
quire a means of bounding the execution time of programs
for admission purposes. Worst-Case Execution Time (WCET)
is most commonly used to bound program execution time. While
bounding a program’s WCET statically is possible, computirg its
true WCET is difficult. We present a new technique we calbpartial
program admissiona means of statically enforcing an otherwise
untrusted assertion of WCET without adding runtime overhead,

Estimated WCET

Paths which must be excluded

by means of code duplication. We apply this technique to real ¢ Claimed WCET
programs from the virtual networking arena and present the aé')’
results. -
£
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|. INTRODUCTION Paths which must be retained

Schedulers for non-preemptive, hard real-time systems re-
quire an accurate statement of the worst-case executian tim
(WCET) of programs. In cooperative environments, we can

rely on the developer to provide this information. In less Paths in CFG
trusted circumstances, we cannot trust the developer t6deo
accurate WCET. Fig. 1. Partial Program Admission illustrated graphicaBaths within the

One important domain that exhibits this problem is higyputative budget are retgined. I_Daths _in the CFG which exdedudget are
. . . . excluded, whether feasible or infeasible.
speed virtual networking. Recent trends in network diversi
fication rely on virtual networks hosted on specialized high
speed network processors [1]. In the case of the Superdaharge .
Planetlab project (SPP) [2], virtual routers run on higiep s_W|th most automated WCET anglyss, we usually over-
network processors such as the IXP 2800 with very high targftﬁ“mat_e the real WCET. The execution paths of the program
throughputs. Allowing untrusted virtual routers presetfits 10F Which the execution time exceeds the asserted bound
following challenging requirements: computational bugge&® explicitly rejected by PPA, while those paths under the
are very small and very tight; the developer is not truste@SSertion are retained. We statically re-write the progtam
the IXP microengines do not support timer interrupts. retain the admitted paths but exclude the rejected paths.

The SPP platform uses a series of non-preemptive, pipelined his can be described graphically, as in Figure 1. Consider
microengines running at 1.4 GHz. To reach a bandwidth targetorogram as a collection of execution paths, given by the
of 5 Gbps on minimum-sized packets, a virtual router mustructure of aControl Flow Graph(CFG). A simplistic way
process each packet in 185 cycles per pipeline stage. ghafm bound the WCET of a program is to find the longest path
a processor safely among untrusted virtual routers reguit8rough a CFG. However, this path may be infeasible — that
that we bound the WCET of each virtual router to prever, the logic of the program may render such a path impossible
impacting well-behaved virtual routers. Scheduling reses There is frequently a large gap between an estimate based on
fairly requires that our bound be as tight as possible. THee CFG and reality [4]. While much research has gone into
developer may know the true WCET of a virtual router, bugomputing ever tighter WCET bounds [5], we side-step the
we cannot trust the assertion. problem by re-writing the program to exclude the paths from

What is needed is a method fenforcingW/ CET assertions. this middle ground without regard to feasibility.

In prior work [3] we presented an overview of a method, We emphasize that PPA is a general method, of which
Partial Program Admission(PPA), for bounding execution we demonstrate a specific example. A developer provides a
time by admittingpart of a program. This works as follows. program and a statement about which execution paths matter
A developer supplies a program and asserts a putative WCE@BIl paths running in 85 cycles or fewer”). We convert this
We use automated WCET analysis to estimate the WCHE®.a statement about which execution paths must be excluded



(“all paths over 85 cycles”), and remove these executiohgat

In our prior work [3], we presented a conceptual overview as
well as preliminary results over synthetic CFGs. In thisgrap
we build on our prior work by presenting an algorithm that
implements PPA, along with an evaluation of the algorithm on
real applications.

In section Il, we define our approach to Partial Program
Admission, and present the algorithm and the complexity
of the algorithm. In section Ill, we evaluate our algorithm
on a variety of synthetic and real CFGs. In section IV we
demonstrate the correctness results. We compare PPA with
alternatives in section V, discuss related work in section V
and future work in section VII. Finally, we summarize our
contributions in section VIII.

II. PARTIAL PROGRAM ADMISSION

Traditional admission control admits programs that ard-wel Fig. 2. Control Flow Graph.
behaved and rejects programs that are not. For our purposes,
a well-behaved program is one that always completes within
some known time, which we term theycle budgetAn ill-  exception is raised. If the developer is wrong or malicious,
behaved program exceeds the budget on some inputs @aths which would overrun the budget are intercepted and an
should be rejected. That is, we can admit a program if tlexception is raised. These definitions are not irreconlelab
WCET does not exceed the budget, where we define WCEBMd we define our correctness as the combination of the two.
as the longest execution time of the program over all passiffunctionally, this approach is exactly the same as a timer
inputs. interrupt approach except that we may raise an exception as
Unfortunately, perfect admission control requires acturasoon as we know an overrun will occur; we do not need to
WCET. In the most general case, determining accurate WCHRit for the actual overrun.
is exactly equivalent to the Halting Problem and is formally Examine Figure 2. We represent our programs by Control
undecidable. Even in realistic scenarios, WCET is oftefi-dif Flow Graphs (CFGs) with designated sourcg &nd sink
cult to compute [6]. (t) vertices. Vertexs represents the last trusted code (from
In PPA, we develop a finer-grained view of a program as scheduling dispatcher) before beginning the execution of
a collection of execution paths. We allow the developer tantrusted code (verticas— g). Vertext represents the point
assert a claim of WCET for a program. We can now definghere we resume execution of trusted code, after the ustiust
well-behaved paths as those which execute within the cthimeode returns control. All execution within the CFG begins at
budget, and ill-behaved paths as those which exceed tha.claand ends at. We also annotate our graph with vertex weights,
This view of a program allows us to enforce the claimetepresenting the cycle cost to execute the code associdtted w
WCET. When the claim is violated, we interrupt the programach vertex. Becauseandt are trusted code, we account for
and raise an exception. Since we have no preemption, we mihstir execution time separately, and do not charge the steftiu
raise our exceptions via some static transform of the prograprogram for their execution costs.
Our application area is high-speed networking, which usesWe must observe here that our CFG is for an idealized
very small budgets, so we cannot afford the penalty of addipgocessor model where execution times are invariant. Tisere
runtime checks. Instead, we examine execution paths amalcache, branch prediction, or instruction pipeline. Efane,
intercept ill-behaved paths. Admissible paths are adrittéhe cycle costs shown in Figure 2 do not depend on any aspect
unmodified. of execution history. This processor model is realistic &or
The notion of removing execution paths from a prografmigh-speed networking application, with slight modifiosais
challenges the usual notion of program correctness. Thel-devo account for an instruction pipeline. (See section IlJ-B.
oper has asserted a WCET bound, or budget. This, combin®d also assume that Control Flow Integrity (CFI) holds in
with the program, is a statement of correctness. From thiés CFG; that is, the program flow follows the CFG. The C
developer’s perspective, a modified program is correctlif alompiler for the IXP has restrictions which make CFl tratgab
paths from the original program not exceeding the budget dreverify.
present. The developer is responsible for the correctrfabgo  We expect to receive as input a CFG with weight annota-
budget. If the developer’s assertion is accurate, the progrtions, special source vertexand sink vertex, and putative
will run exactly as expected. An inaccurate budget is regdrdcycle budgetB. The cycle budget is an assertion of WCET
as a developer error justg as any other software defect. Frogn the developer. Since we do not unreservedly trust the
the admission perspective, the program is correct if alhpatdeveloper, we must validate or enforce the budget.
which would have exceeded the budget are intecepted and amhe developer also provides a “time-exceeded” exception



Path Weight | Result
sabdegt 6 | Admissible
sabdfgt 9 [ Admissible _ )
sacdegt 8 | Admissible cset(v, G) = U cseti(v, G)
sacdfgt 11 | Exception €L
TABLE | _ Our overlapping subproblem can now be phrased as follows:
PATHS FROMCFGIN FIGURE2 AT B = 10. given CFGG, vertexv, and cycles remaining, what is the

csetr(v, G)?
To answer this, we observe that the completion sets contain
] ] o . some structure. First, observe that as the budget increases
handler,z. z is written to ’very restrictive standards Wh'chcompletion sets of the same vertex can only add paths, never
allow easy computation aof’s WCI_ET. F_or purposes of PPA, lose paths. That isgsetp(v,G) C esetpyq(v,G). Second,
we formally neglect the execution time of the exceptiofhese path additions take place in discrete steps, whetiever
handler. In a hard real-time system, we must account for this;-nes the length of a new pathdset(v, G). Let us define
by suitably adjusting the budget for the possibility of &8l he setcleny (v, G) as the set of lengths of all paths in the

a at any time during program execution. csetr(v,G), andclen(v, G) analogously as
We can view this CFG as representing a set of execution

paths, each one a different path through the CFG from source

to sink. Our PPA algorithm recognizes those paths which clen(v, G) = Ud@ni(UaG)

complete under the budget and admits them. Paths which i€Z

would exceed the budget are rejected. Since these pathblote that ask increases, completion sets only change when

represent real code paths, we “reject” them by redirecting £ reaches a member of the corresponding clen. This allows

the exception handler. We refer to theseexseption paths Us to define equivalence classes of cycle budgets.

See Table I. Let the clen set define a set witervals between adjacent
We generally seek to redirect exception paths at a bran@fflered elements. For example, using the CFG in Figure 2,

point in the CFG that will definitely cause the budggtto clen(S,G) = { 6, 8, 9, 11 }

be exceeded. Since exception paths diverge from admissible yields{—co,5] [6,7] [8,8] [9,10] [11,00]

paths at such branches, we can meet our need by overwriting

the destination address of branch instructions with theessd  For convenience, we will treat these intervals as sets of

of the exception handler. We note that this does not add 3(El'yntiguou5 integersl with the usual set Operations_ Wealgt
time to admissible paths — we only modify exception pathgefine scalar addition to an interval as shifting the endgoin
Since the affected branch point was itself part of an admishat is, [i, j] + k = [i + k, j + k].
sible path, we know that the cost of the path fréfito the Al completion sets for budgets within the same interval
branch point does not exceétl Since we formally neglect the will be identical. Given theclen sets, we can now answer
execution time ofr, no exception path can exceed the budgeur overlapping subproblem. If we have already computed a
B. csetg, (u, G), and we wantcset g, (u, G) where R; and Ry
Our collection of admissible and exception paths can nojye in the same interval, we have precomputed our answer.
be viewed as a new CFG. This CFG is guaranteed to m@®hce the completion sets are equal, we can represent these
our cycle budget, because all paths are of length at most completion sets by the same vertex in our transformed CFG.
Unfortunately, some degree of code duplication is necggear Having the completelen sets for each vertex in the CFG
represent our new set of paths. Our PPA algorithm ensurés thehd therefore the intervals as well) will allow us to comgut
we have the minimal degree of code duplication required; theur transformed CFG directly.
is, the new CFG is the smallest CFG that contains precis%y

the desired paths. Computing theslen Sets

. Completion sets of vertices are built directly from the

A. Completion Sets completion sets of successor vertices in the CFG. Giverxert

Examining all possible paths through a program is usuallywith successorsy, ..., v, with known completion sets, we
infeasible. However, observe that paths often share the sazan prepend: onto each path from eadtset(v;, G) to find
suffix. Once a path suffix has been examined at one budgég paths incset(u, G).
any new paths that have the same path suffix may contain overSince clen(u, G) is just the set of lengths of paths in
lapping subproblems. This suggests a dynamic programmingt(u, G), we can also computelen(u,G) from known
approach, and our PPA algorithm operates in this way.  clen(v;, G) sets. For each value in eacdlien(v;, G) we

A set of path suffixes can be represented by the CF@&d increment byw(u) and add it toclen(u, G).
a vertexv. We will refer to this as the completion set ofin Finally, since our sink vertekhas no successors, we have a
G, or cset(v,G), consisting of all paths fromy to ¢ within  basis completion setset(t, G) = {t}, and basiglen(t,G) =
G. We also introduce the notion of theetp (v, G), the set of {0}. This allows us to compute allen g sets as in Figure 3. If
all admissible paths (lengtB or less) fromw to ¢ in G when we implement thelen sets as bit vectors, the time complexity
examined with budgeB. Then we can say is O(mB).



initialize clen(u,G) = for all u
initialize pending = [(t,0)]
while pending not emptydo
Select a pail(v, j) from pending and remove it
for all edges(u,v) in G do
if j4+w(u) ¢ clen(u, @) andj + w(u) < B then
Add j + w(u) to clen(u, G)
Add (u,j + w(u)) to pending
end if
end for
end while

Exception Vertices

Fig. 3. Computingclen sets.

C. Computing the Transformed CFG

The clen sets define all of the intervals for each vertex.
Theclenp sets are equivalent so long as we never consitier
values that excee®. We can define a new graph), which
tracks the remaining cycleR at each vertex by the interval
into which eachR would fall.

We are interested in the equivalence classes of verticés wit
identical completion sets. For this purpose, we will name Oy 4 pynamic programming graph generated from Figure 2. Exception
vertices inD by a 2-tuple of the vertex and interval, whereertices are those vertex/interval pairs with empty cotiqresets.
the interval containgz. Notationally, we will refer tou[I], or
when using the interval endpointsli, j].

GivenG = (V, E), let us defineD = (V’, E’) as follows. Since our goal is to generate a program which raises an

exception as early as possible, and which returns control to
V' = {u[l] | u e V,I defined byclen(u,G)} the trusted code immediately after, we must modify our graph
E = {@[I],v[J]) | (u,v) € E andI C J + w(u)} D. Let D’ be a new graph where all exception vertices are

coalesced into a single vertex, and add an edge from to

If we apply this to the CFG of Figure 2, we get the graph in[0, cc]. See Figure 5.

Figure 4. This is our dynamic programming graph, which we We can now generate our transformed CEGas simply
can use to determing-bounded completion set equivalencethose vertices ofD’ reachable frons[H]. One algorithm to

Observe the following key properties, for which we defedlo so inO(m') = O(mB) is in Figure 6. For this, we require
proofs to Section IV. First, paths i) correspond directly @ vector for each vertex which records the interval defined
to paths inG. Second, given a valu& and vertexu[I] DY clen(u,G) corresponding to a given cycle couRt< B.
such thatR € I, those paths fromu[I] ending att[0,oc] Using this, we can find the interval that containg — w(u)
have length not exceeding, while those paths ending atin constant time. We can compute this vector(inB) =
t[—o0, —1] have length exceeding. That is, those ending at O(mB) time using the values aoflen(u, G).

t[0, 0] correspond to members eketr(u,G). This allows  Following our running example;”’ is shown in Figure 7.

us to immediately determine when all paths from a vertex An alternative variation to comput@’ directly fromG can
exceed the budget, yielding our exception paths. That is, flee implemented by recursive descent augmented by memoiza-
any value R in the interval of an exception vertex[I], tion, taking the same worst-case time complexity. As exguict
csetr(u,G) = (. Finally, givenu € V, Ry, Ry in the same the sparse memoization yields a speed improvement.
interval, thencset g, (u, G) = csetg, (u, G), and inversely. )

Recall that our goal is to produce a new CE% from ¢ D- Complexity
and B where all paths of lengttB or less are included; all There are two types of complexity that matter for this
paths of length exceeding are intercepted. That is, we wantalgorithm. First, we have theomputationalcomplexity of
a new CFG wheresetg(s, G) is admitted and all other pathsthe algorithm. Second, we have thpatial complexity of the
in cset(s, G) raise exceptions. generated code.

Let H be the interval ats which containsB. From the  This algorithm is intended for static analysis of program
properties ofD, we know that all paths from[H] to ¢[0,c0] code submitted for admission. The algorithm will run once
have lengthB or less; all paths froms[H] to t[—oco,—1] at admission time and then (if admitted) never again. The
have length exceeding. Further, we can recognize the exacgenerated code will be installed and take execution stare fo
branch at which a path is certain to exced the lifetime of the deployment. Thus, while we need the



Fig. 5. Dynamic programming graph used by algorithm of Figné-ig. 2.z Fig. 7. Bounded execution graghi’ from Figure 2 atB = 10.
takes the place of vertices associated with lower-unbadimatervals, where

the corresponding completion set is empty. For examptets(c, G) = 0

and soc[—o0, 5] is replaced byr. The edgex — t[0, oo] is included to

return control to trusted code after an exception. Spatial complexity of the copies af depends upon three
factors: the number of paths fromto «, the number of paths
given D" = (V, E), S[H] from u to ¢, and the budgeB.
initialize V' = {S[H], X, T'0, o]} At each vertex inG, we add a copy ta3’ corresponding
initialize E’ = {(X,T[0,0])} to each interval that is botpresentand reachablefrom the

initialize pending = [S[H]]
while pending not emptydo
Select a vertex[I] from pending and remove it
for all edges(u,v) in G do
let J be the interval otlen(v, G) containingl — w(u)
if v[J] is an exception vertethen
Add (u[I], X) to E’
else ifv[J] ¢ V' then
Add v[J] to V’
Add v[J] to pending
Add (u[I],v[J]) to E’

sources by paths of cost no more thaR.

Individual budget values at vertexare divided into equiv-
alence classes by the weight of each patlasiet(u,t). More
precisely, we have exactly one interval for each path from
to ¢ of distinct cost, plus one for exceptions. Therefore, the
number of paths of distinct cost from to ¢ forms an upper
bound on the number of copies ofand is exponential in the
branching factor of7.

Each interval corresponds to some numbers of cycles re-
maining at this point in the CFG. For a copy/] to be added
to G/, the associated intervdlmust bereachable there must

and i be a pattp from s to u such thatB—w(p) is within the interval
en?jnwhﬁ(; 1. Therefore, the number of paths of distinct cost frero «

is an upper bound on the number of copiesupfand is also
Fig. 6. Computing CFG3’. exponential in the branching factor 6f.
Since vertices inG’ are of the formu[I], intervals have
minimum size ofl, and we only need consider intervals below
computational complexity to be tractable, we consideriapatthe budgetB, the number of copies per vertex is upper-

complexity to be the more important factor. bounded byB.
We have already addressed computational complexity,Thus, our spatial complexity per vertex is upper-bounded
which is O(mB). by the minimum of three factors: the number of pathg,to

The code is emitted directly from&”’, so the spatial com- the number of paths from, and the budgeB. That is,
plexity of the emitted code is proportional to the complexit

of the vertex set ofy. #copies of vertexu = O(min( #pathss ~ u,
Verticesu([I] in G’ each correspond to a vertexin G. We #pathsu ~ t,
will refer to these as copies af and consider the number of B))

copies of each vertex ity which can exist inG’.



Distribution of Maximum Code Duplication Required analysis on real code, we adapted the base algorithm to run
100 on assembly code for the IXP 2800 architecture.
90 . The IXP 2800 architecture uses a 4-stage pipeline. The
i pipeline requires that we account for pipeline aborts on
branches. This can be done in a straightforward manner, by
inserting dummy vertices into the CFG. These dummy vertices
carry no actual code, but have a cost equal to the pipeling abo
costs of the branch. We inserted one of these dummy vertices
into each flow transfer edge with a pipeline abort cost.
30 . The IXP 2800 supports up to 8 hardware thread contexts
20 i per processor. Context switching fragments CFGs and leads t

80
70
60
50

40 [ —

Percentage of CFGs

10 H | greater difficulties in WCET analysis [7]. In this evaluatjo
o m"ﬁmhﬁﬁﬁﬁ_rﬁw we ignore the problem of inter-thread dependencies. Our<CFG
123456 7 8 910111213 14 15 16 17 18 19 are examined under a strictly single-threaded model.
Maximum Duplication Required The IXP 2800 also has a memory hierarchy of local regis-

ters, very fast local memory, off-chip SRAM banks and off-
Fig. 8. Percentage of synthetic CFGs requiring more than Mication  chip DRAM banks. There is no automated data or instruction
(from run of 1000 synthetic CFGs). cache; all memory management is manual. Asynchronous
memory access instructions allow for masking of high memory
1. EVALUATION latencies. These asynchronous memory access instructions

We h luated the aldorith . ¢ th té)ically allow a program to start a memory read, perform
€ have evaluate € algorithm on a series of syn eg/éme processing, and then context-switch to await thetsesul

CFGs and CFGs from real code. The results on synthetic CF
have been previously published in [3]; we briefly recapiiila

X -~ alth
these results here. We also describe here our examinatio
of the algorithm on real CFGs from a network processi
environment.

neglect “swapped out” memory latency in our evaluation,
ough we consider this an important detail for future kvor
We must also ensure that our CFG is correct, that CFI holds
"Br our analysis. Fortunately, the C compiler and architect
for the IXP have some fundamental limitations that make this
A. Results on Synthetic CFGs relatively easy. First, there is no stack. Return addreases
Our synthetic CFGs were generated by a series of vertgired directly in registers. In consequence, there is atso
substitutions that parallel grammar production rules in-a decursion. We can ensure that returns from functions are san
like language. These CFGs were restricted to acyclic cambs #/St by verifying that the return register is untouched. det;
included simple statements, if-then-else and switch/case there are no function pointers, so all function calls ardlieitp
statements. The mean size of the CFGs was 3600 instr@gd immediate. If we do not allow inline assembly, then CFl
tions. This is more than double the largest real program Wp@lds automatically. To allow inline assembly, we can simpl
studied, and provides a useful bound on performance onrlargéerdict constructions which are difficult to prove coirec
programs.
Figure 8 represents the results of running the algorithﬁ‘r Sample Code
on 1000 randomly generated synthetic CFGs. We show theOur sample code comes from high-speed network proces-
resulting distribution of the maximum code duplicationtéac sor modules written for the Supercharged Planetlab (SPP)
required for each synthetic CFG over all possible budgefwoject [2] and plugins for the Open Network Laboratory
The vast majority (82%) require a maximum duplication factdONL) [8]. See Table Il
from 1-2, with an average maximum of 1.6. Large duplication Our list of programs is as followsCount is a simple
factors are actually very rare; one pathological case redud packet counterNst at s gathers statistics on the proportion
duplication factor of 23.5. Subsequent analysis of thisvgda of different protocols within the packet streaRor t _count
showed that it was composed almost exclusively of a seriesanfd port _reporter are a matched paiport_count
nestedswitch/casestatements. tracks the TCP and UDP ports seen in the packet stream, and
Results on cyclic synthetic CFGs are not meaningful in thgort _r eport er reports this information to a centralized
absence of a WCET assertion. As demonstrated in subssiore. These programs were all student-written.
tion 1I-D, the code duplication is linear in the budget, andt 0 | pv4_par se parses IPv4 headers, which may be encap-
synthetic evaluations confirmed this. Without a known WCE3ulated in tunnel headers, and performs RFC 1812 router
of interest, the maximum duplication for cyclic CFGs cannaferifications. | pv4_hdr f nt _encap?! rewrites IPv4 head-
be evaluated. ers for next hop forwarding, including encapsulation withi
B. Adaptation to Real Code UDP tunnelsl 3_par se andi 3_hdrfnt _encap perform

Our algquthm has been designed for an |deal|ze_d Processiye manually analyzed a simiarly-named program in  [3].
model which lacks a number of real-world details. In ourpv4_hdrfnt _encap is distinct and does significantly more work.



Program Size Cyclic?

(Instructions) 1) Acyclic Programs: Figure 9 shows the results of the

count 23 No analysis on acyclic programs. All sizes have been nornlize
_ 4”Stat5 g?i HO to the inlined program, including the original program size
i pv4_par se o]
i pv4_hdrfmt encap 497 No We manu_ally analyzed these programs fo_r real WCET, a_nd
i 3_parse 734 No asserted this as a budget in our PPA algorithm. For the first
i3_hdrfnt_encap 582 No three programs, the WCET was the length of the longest path
port_count 229 Yes in the CFG. In these cases, the program could be adniitted
port_reporter 133 Yes . p .
TABLE I toto, with no modification at all.

For the next three programs, the real WCET was shorter
than the longest program path. In these cases, some dignicat
was necessary to differentiate admissible and exceptitrspa

Thei pv4_hdrfnm _encap analysis brings out an inter-

SAMPLE PROGRAMS FOR EVALUATION

_ Acyclic Program Sizes after PPA esting point. We define the WCET as the largest execution

§ 4 Original Program £ time over all possible inputs. However, we have information
g 351 '“"nedAf*t’;gfgLn 1 about the inputs that is not available in either the CFG or

% 3t i thei pv4_hdr f mt _encap program. The compiler generates
£ | | memory accesses without assumptions about memory align-

Z 25 y p y alig
° ment. In this case, we know that the inputs will be such that

2 - .

ks memory accesses will be properly aligned. Therefore, tespi
'Té L5 T the fact that these paths are feasible over all inputs, we do
S 1F : : : : : 8 not regard these inputs as possible. This reduces the WCET
e o5l S > : ‘ S > ‘ : i to 192 cycles. Even a perfect WCET analysis tool would be

[ 0 3 5 5 3 5 5 unaware of this domain knowledge. Working solely from the

a 5 ; . y ; i pv4_hdr _encap program, the correc wou
. X ) ) 5 4_hdrfmnt th t WCET Id
o ey TR, TR, N be 203. In this respect, our PPA has capabilities not pravide
Vs O}f/)’ ‘e " by perfect WCET-based admission control.
\e, \6’0% 2) Cyclic Programs:Two programs contained loops. These
% were short, static iteration coun oops used to travers
% © hort, static iterat t (4) loop dtot

Fig. 9. The results of running our PPA algorithm on a serieproframs at gmal|| tables.

their respective real WCETSs. All programs were fully inlihbefore analysis. - .
Al progr'[;ms were acyclic. prog Y Y Pure tree-based WCET analysis is unable to bound cyclic

code at all, as no iteration bounds are available. A common
solution to the problem is to provide language constructs
for static iteration bounds on loops, whereupon the aralysi

8][oceeds by assuming maximum iterations [4]. There are also

a novel architecture for using indirection as a means . . : .
- ' . approaches to automatically bounding loop iterations.[I]
giving users greater control over the traffic they receiveede ; ; ? :
our analysis, we do not provide any iteration bounds — the

programs were written as part of the SPP project and were . . . :
developed to rigorous standards of performance. Thereforr]émeer of iterations is ultimately bounded only by the cycle

most function calls were inlined, and all loops were unmbllebUdg.et' L :
for speed ' This has the effect of implicitly unrolling each loop to the

limit of the budget, resulting in significant code dupliceti
To examine this code with our algorithm, we needed g g J P

) evertheless, we can still produce bounded programs even in
make a number of changes to the programs. First, our

ith | K CFGs that d in f . fhe absence of any iteration bounds at all. See Figure 10.
gorithm only works on CFGs that do not contain function | "iha case of theport _reporter program, the du-

calls. Therefore, all function calls were inlined. Secosmine plici%tion factor is substantial, 13.98. However, even as th

code contained inter-thread depe_ndencies. We have char?%? r, the transformed program is only 3,048 instructions
thes_e _p_rograms_to c_onform toa smgle-threaded model. ’Th'_ is readily fits into the IXP 2800 instruction store (8,192
our initial examination showed that cyclic code resulted 'fﬁstructions)

substantial duplication, so we have analyzed the cycliednd The duplication on theport count program is more
both the original state and after unrolling all loops to prod reasonable at less than 6. The_duplication factor here is due

acyclic code. Finally, we have re_moved debug code Wh'(fnostly to structural characteristics of the program rathan
would n_o_t be present in a_productmn syst_em. the budget. In particular, a loop does not prohibitivelyraase

We divide our presentation as follows. First, we present ﬂb?ogram size if the rest of the program path lengths are in a
results on acyclic programs. We follow this with the cycligma) range, and the WCET assertion is accurate.
programs, first analyzed as cyclic programs, then analyzedsy ynrolled Programs:Despite the fact that our PPA algo-
after unrolling all loops. Finally, we take a detailed look ajthm works on unbounded loops, we examined the results of
the results on one program over a range of budgets. unrolling the loops to decrease the duplication. This bhaug

analogous tasks for thiaternet Indirection Protoco(i3) [9],
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Fig. 10. The results of running our PPA algorithm on a pair tlic 0 50 100 150 200 250 300 350 400 450 500
programs at their respective real WCETs. All programs wedty finlined Budget (Cycles)

before analysis.

Fig. 12. Code duplication of pv4_par se on various budgets. The real

£ Unrolled Program Sizes after PPA WCET (414) is equal to the longest path, so there is no codécdtipn at

] 3 this budget.

2 Inlined Programg=<=

T L5l Unrolled ProgramEszsa |

3 : After PPA =

I L | arises. Below this value, path pruning requires duplicatm

5 differentiate cycles remaining to successor vertices. @rst

2 15t 1 possible duplication factor, 16.66, occurs at 320 cycles.

é 1L ] Below 190 cycles, we begin to prune all paths containing

E certain vertices. We no longer admit any copies of these
g 05p 1 vertices. Below 137 cycles, we have pruned so many paths
g o that the resulting program is smaller than the original, and

port_count port_reporter 64 cycles, all paths are rejected.
For completeness, we also present the duplication curve on

. . _ _ a cyclic programport _count . See Figure 13.
Fig. 11. The results of running our PPA algorithm on a pair ofolled In thi th = | t th d the duplicati
cyclic programs at their respective real WCETs. All progsamere fully n tnis Case' ere Is no. onges ] path, an € dup IC&} on
inlined before unrolling, and fully unrolled to an acycliorfiguration before factor continues to grow linearly in the budget. Asserting

analysis. an accurate WCET becomes a crucial part of mitigating the

duplication factor. In this case, the real WCET is 268, for a

duplication factor of 13.98.

) - The same discussion at low budgets applies to cyclic pro-
See Figure 11. After unrolling, th@ort_reporter gams Below 123 cycles, we begin to prune all copies of some

program’s WCET was equal to the length of the longest paflariices; that is, there are no admissible paths which éelu

in the CFG, resulting in admission without duplication. Fofyese vertices. At 112 cycles, we emit a smaller program than

the results back into line with the rest of the acyclic progsa

port_count, some duplication was still necessary. the original, and at 33 cycles no paths are admitted.
Our goal is to share a processor between bounded-execution
programs. It is a significant result that we can fit all 8 IV. CORRECTNESS

transformed acyclic programs (7,018 total instructions) the Our demonstrations proceed as follows. First, we re-shete t
same IXP 2800 instruction store (8,192 capacity) with mogsroperties of the grap® from section II-C in mathematical
than enough room remaining for a scheduler. terms. These are proven as lemmas. We follow this with the
. important results: the new program ¢®@mplete in that all
D. Analysis with Range of Budgets paths which the developer requested are present; the pnogra
When the WCET is equal to the length of the longest path is bounded in that all paths are of length at moBt These
the CFG, we admit the prograim toto, with no path pruning two results taken together meet the correctness definiti@ns
and no consequent duplication. When the WCET is shortgave in section Il. Finally, we close with a proof that the new
we have some degree of duplication. We now explore tipeogram is asompactas possible.

deg_ree of possible duplication over a range of budgets fl?(ramma 1. GivenG = (V, ), u,v € V, (u,v) € B, I defined
thei pv4_par se program.

Observe Figure 12. This is a fairly typical duplicationbyden(u’G)’ then there is exactly one intervdl defined by

, ﬁ%en(v, G) that intersects — w(u).
curve for an acyclic program. The longest program pa
was 414 cycles, and at this budget or higher, no duplication Proof:



TCP/UDP Port Counter the definitions,i = 6(¢,t) = 0, I = [0,00], P(t[0,0]) =

30 T T T T T T T T T {t} = CS@to(t, G)
E Inductive Step. Given pathp € cset;(u,G) wherei =
S 251 1 d(u,t), let the second vertex of be v. This implies that
E WCET (u,v) € E, andd(v,t) = i — w(u). Let p’ be the path
g2 20r 1 whenw is removed fromp. Thenp' € eset;_y, () (v, G). Let
= \ our inductive hypothesis be that € P(v[J]). Then by the
g 5 i definition of D, edge (u[I],v[J]) € E', sinceJ intersects
}—E " I — w(u). Thereforep € P(u[l]) as well. ]
g Lemma 3. GivenG = (V, E) andD = (V', E') with u[i, j] €
3 st g V', and let P(u[i, j]) be the set of paths[i, j] ~ t][0, oc] in
® D shorn of intervals, themset; (u, G) C P(uli, j]).

O 1 1 1 1 1 1 1 1 1

0 50 100 150 200 250 300 350 400 450 500 Proof:
Budget (Cycles) First, note that fori < d(u,t) this is trivially true, as
cset;(u,G) = (. We now consideri > §(u,t), and we
Fig. 13. Code duplication of TCP/UDP Port Counter programvarious demonstrate by induction on
budgets. The real WCET is 268, bounding our final duplicatri3.98 Basis.i: = 5(% t). This is exactly Lemma 2.

Inductive step. Let p be a path incset;(u, G), and letwv
S ~ be the second vertex along (If there is no second vertex,
By definition, intervals at the same vertexover the entire han., — t, p = ¢ which matches the patti0, oc] in D for all
set of integers. Also by definition, intervals are non-empty - 0.) Then lety’ be the path when is rem(;ved fromp. Then
Thgrefore, there must exist at least one inter.WaI:- [, K] P/ € cseti_ww (v, G). Let our inductive hypothesis be that
_deﬁne_d byclen(v, G) sm_Jch that/ intersects any other mterval,p/ € P(v[J]). Then by the definition oD, edge(u[I], v[.J]) €
including I — w(u). Without loss of generality, leff be the E', since J intersectsI — w(u). Therefore,p € P(u[l]) as
largest such interval (greatest lower bouj)dat v. well. -
Let i = min(I). We can now state our completeness theorem, which proves

It j > i —w(u), then there exists a path ~ ¢ in & of that the program meets the developer’s perspective of derre
length j + w(u), which implies thatclen(u,G) defines an pess.

interval lower-bounded by + w(u). But because intervals at )
the same vertex are disjoint, this would imply thatannot Theorem 1 (Completeness)All execution paths that do not

intersect/ — w(u). Thereforej < i — w(u). exceedB are present in the transformed CF@G.
Theclen(v, G) can define no othei’ = [j’, k'] # J which Proof:
also intersectd — w(u), becausg’ < j < i —w(u). B By definition, all paths inG’ are in P(s[H]) if B € H, so
Corollary. Given the same situation as in Lemma [l We can state this theorem mathematicallycast (s, &) <
w(u) C J. P(s[H]). This is immediate from Lemma KJ’_ is actua!ly
generated fromD’ (see Section II-C), which is a modified
Proof: version of D. However, P(s[H]) in D’ is a superset of
There is exactly one intersectiod, If I —w(u) £ J, then P(s[H]) in D, as we have only added the exceptions paths.
some other interval at would intersect the remainder éf— m
w(u). u We can also demonstrate the converse by a similar set of

Next we demonstrate thaket;(u, G) “matches” the paths |emmas. That is, no paths have been incorporated fintor
in u[I] ~ t[0,00] in D. By matchesve mean that if we strip D’ (and therefores”) except for those ofset s (s, G) and the
the intervals from the vertices in the pathsiin the sets of exception paths. We omit these proofs, as we can resort to
paths are identical. This requires a series of lemmas. an argument that the vertices of CR@ have meaning. Any
We introduce a new notationi(u,v) to be the shortest path arbitrarily added t6:" would be unreachable code; there
distance from vertex. to vertexv in G. Distance refers to would be no flow transfer to match the edge by which the
the sum of the weights of the vertices in the path. extra path was added.

Lemma 2. GivenG = (V,E) and D = (V', E’) with u[I] € Theorem 2 (Boundedness)All paths in the transformed CFG
V' andi = 6(u,t) € I, and let P(u[I]) be the set of paths G’ have lengths less thaB.
ul[I] ~ t[0,00] in D shorn of intervals, themset;(u, G) C

P(ul1). Proof: _ _ o
All exception paths diverge from admissible paths. The
Proof: exception handler is treated as having no cost. Thus, the
We proceed by induction on path lengths. exception path length is not longer than at least one adntéssi

Basis. Path length of oney = t. Then immediately from path, with lengthB or less. [ ]



Theorem 3 (Compactness)There is no other graph meeting V. ALTERNATIVES
Thms 1,2 with smaller size thafd’. That is, G’ is (one of)

. . PPA is one of several approaches to solving timer overrun
the most compact program(s) meeting our requirements.

problems, each of which has different trade-offs. In gelnera
Proof: there are 4 approaches to the problem: timer interruptsuins

This proof maps the CF@&" onto a Deterministic Finite mentation of programs with runtime checks, WCET analysis
Automaton (DFA) accepting strings isomorphic to paths iwith whole program admission, and PPA. We will compare
the completion set, then applies the Hopcruft-Ullman algdhese approaches, with recommendations on when to use each
rithm [11] to demonstrate tha#’ is maximally compact. approach.

When we speak of program size, we refer to the amount of Timer interrupts are the most common approach. The sched-
code. Hopcruft-Ullman counts the number of states. Theegfouler sets a hardware timer and calls the untrusted code. If
to apply the algorithm directly, we must break our vertioes ithe code completes within the alotted time, the timer istrese
G into single-instruction vertices. For purposes of our PPANd the next program can be called. Otherwise, a hardware
algorithm this is purely cosmetic. interrupt returns control to the scheduler. This requilest t

GivenG = (V,E),D' = (V',E’), andG’ defined as that the hardware support low overhead timer interrupts, but has
portion of D’ reachable fromS[H] where B € H, we can the advantage that we do not need any low-level architectura
construct DFAM = (Q,X,6,q, F) as follows. (Note that knowledge at all. When available, this is usually the best

we now deal withD’ rather thanD.) approach.
The states) of M are taken directly from the verticég’ Instrumenting programs with runtime checks of time re-
of D, with a additional trap state, for undefined transitions maining is straightforward and requires minimal undergtag
and one explicit accept statgy. of program logic or underlying architecture. Unfortungjet
The alphabel is taken from the edgeB of G. adds some additional cycles to the execution time. It alsts ad
Our transition functiors is defined as follows. a (small) amount of code. This approach is best when WCET
, analysis is exceptionally difficult and some overhead can be
o[J] If (u[l],v][J]) € E tolerated.
z  If (u[l],v][J]) ¢ E" and WCET analysis uses automated analysis of a program to
S(ull B (ull],x) € E estimate the WCET. Having this estimate, we can directly de-
(ull], (u,v)) = qr  u[l] = t]0, ] and termine whether to admit or deny the program. This approach
(u,v) _ ([0, 0], qr) requires that our estimates are reasonably tight, or admiss
. control becomes overly pessimistic. Obtaining tight eatas
gr  Otherwise. of WCET usually requires substantial time and architet¢tura
qo, our start state, is defined as the root®f S[H]. information, and implementat_ions are ofte_n difficult. We_ede
Our set of accepting statds = {g}. to solve the dual problem of single-instruction WCET anislys

This DFA M accepts sequences of edges. It is easy Yich depends_upon _the underlyir?g architecture, and arlitr
show by induction that the paths as sequences of edges RfiRgram behavior. This approach is usually best when bsdget
isomorphic to paths as sequences of vertices. Following the l00se and some pessimism in admission control will not
properties ofD’, we know that)/ acceptseset(s, G), with Impact the application greatly. _
the rest of the paths (if any) imset(s, G) replaced with ~ PPA works on a path-by-path basis to support developer
exception paths. assertions of WCET. This places a burden on the developer

We can now directly apply the Hopcruft-Ullman aIgorithmFO estimate the WCET, although there is no requirement that

This consists of two phases: first, we remove all vertices ¢ estimate be tight. It also requires underlying archited

reachable from the start state. This is exactly our conitruc information to solve the single-instruction WCET analy$ist

of & from D'. avoids the need to understand program behavior. It has the
Second, we partition the states of the DFA into equivalen@dvantages of adding no execution time, but the disadvantag

classes based on strings accepted. Two states are equif;alefl! INcreasing program size. This is best when budgets are

were the DFA started in these states, they each acceptyxagial!l; reducing duplication, and tight, where runtime dsec

the same set of strings. By our construction/#f we know ©F traditional WCET analysis may be inappropriate.

that each stateli, j| accepts strings corresponding to paths in

cset;(u, G) and the related exception paths. These are already

in equivalence classes via intervals; each stafe iwill accept We have already discussed other approaches to the same

a different set of strings. problem of bounding execution time. Here, we discuss re-
Finally, we construct the new, minimized DFA using theearch that uses similar underlying techniques.

equivalence classes as states in the new DFA. Since we havBuplicating paths to exploit different characteristiceraj

exactly one state in each equivalence class, the minimiZ#d Dthe path history is not new. In [12], paths are duplicatechso t

is isomorphic toG'. data flow problems, unsolvable along one path, can be solved
Therefore,G’ is minimal. B in the duplicate. This allows superior compiler optimipat

VI. RELATED WORK



Method Use when

easier are also not new. Closest in spirit and functionality

Timer Timers are available and have low overhead ) A s )

Runtime Checks Overhead is acceptable is the Single-Path approach to writing temporally predita

WCET Hardware model is tractable; and program code [15]. The single-path approach is a variant of WCET
gf:?(‘)’fs;ca” be fully understood or budgets 5 n5vsis where we remove data-dependent branches from a

PPA Budgets are small and tight, hardware model program to yield a program with one execution path. Once
is tractable the program is reduced to a single path, WCET analysis is

TABLE Il trivial.
COMPARISON OF APPROACHES TO TIMER OVERRUN Da‘[a_dependent branches are removed by execmg

sides of the branch and retaining only the correct resuttgusi
predicated instructions. Loops are retained but convérted
) ) o data-dependent iteration counts to fixed iteration courite
along heavily used paths while bypassing infrequent patiss its of unnecessary loop iterations are discarded. Both
which cannot be so optimized. transformations have the net result of increasing WCET by

PPA is closely related to, but distinct from, WCET analysigome amount.

We only estimate WCET of paths until we find that a path | contrast, our technique increases code size by dupigati
will exceed the budget, and intercept that path. In this wayg tia| paths as a means of retaining path history, while WCE
we sidestep the problem of path feasibility which WCETg yntouched.

must address. However, since we rely on our estimate oy see these techniques as complementary, applicable to
exclude paths, the per-path estimate must be tight or we M@jerent arenas. Given a very small cycle budget, the aeamih
exclude safe paths in violation of the developer's cormestn ot any added runtime is unacceptable. The single-path ap-
requirements. In traditional WCET analysis, overesting@ roach would penalize programs significantly. Since ourecod
single path can only lead to overestimation of the total @0Y qyplication is bounded by the budget, this environment also
WCET. keeps the duplication factor small.

PPA is also distinct in that even a perfect WCET analysis Gjven larger budgets, the situation is reversed. Code du-
would not fill all of the uses of our PPA technique. Considegjication can balloon, while the addition of a few cycles of
the case of pv4_hdr f nt _encap, where the developer hasyyntime in the single-path approach is a minor cost.
access to preconditions which might not be available to awe pelieve that a synthesis of the two techniques could
WCET analysis. These preconditions, on memory alignmegl interesting. Our code duplication is bounded by brargchin
render the longest path infeasible. Unless a way exists ffg:tors which the single-path approach can limit; the WCET

express these pre;onditions to the WCET analysis tool, Wenalty of the single-path approach could be mitigated by
will always overestimate WCET. PPA allows the developer i§yme code duplication.

assert the WCET directly.

Distinctions aside, PPA is founded on simplistic WCET VII. FUTURE WORK
analysis techniques, and improvements to the underlying esOur priority in future work is techniques to reduce the dupli
timation may also improve PPA performance. WCET anatation factor, especially for cyclic programs. The alguritas
ysis falls mostly into two distinct methods, tree-basedhpapresented here substitutes code duplication for knowledge
enumeration [4] and implicit path enumeration [13]. In treepath feasibility. We believe that we can incorporate feitigib
based path enumeration, depth-first examination of the Chf$ormation in two ways.
combined with a pessimistic “worst-of-successor” tally of First, we can incorporate feasibility information from a
instruction times yields a fast estimate of WCET. In the ptiretrusted source by representing infeasible paths as regular
form, no effort is made to avoid counting infeasible pathgxpressions within the CFG in a manner similar to the work
so this method typically overestimates WCET significantlyn [14].

Extensions to limit counting of infeasible paths [14] tyqliy Second, we can incorporaitatrustedeasibility information
increase analysis time unacceptably. This renders maost treepresented in the same way, by taking developer assertions
based techniques unsuitable for admission control. While ogs statements of correctness.

analysis portion is most closely related to the tree-baseld-t  Recall that the general PPA method involves transforming
niques, we use the information to reject paths, not programasprogram to remove interdicted paths, while retaining path
Therefore, we do not reject complete programs because qfigich the developer requires. In current work, all paths are
long path cannot be shown to be infeasible. strictly classified into one category or the other.

Implicit path enumeration uses information from the de- Labeling infeasible paths allows a middle ground, where
veloper on branch constraints to develop a much tightesme paths are acceptable but not required. This allows
estimate of WCET. We regard the developer as untrusted, &fexibility in the transformation which could be used to fust
cannot rely on developer assertions for safety. Implicithpareduce code duplication. Provably infeasible paths can be
enumeration is most useful in PPA when a developer usegdtained or omitted without impacting safety. Assertioresf
to determine real WCET, prior to program submission. the developer may not be trusted, but amount to a statement

Transforming programs to make demonstrations of WCHEfom the developer that “I consider this path optional. Keep



it or throw it away as you please.” This introduces the notiomigh-speed networking context. We also enforced our bisdget

of optional paths, consisting of the provably infeasibléghga with no runtime overhead.

and the admissible developer-flagged paths. The new problenfinally, we have demonstrated two additional advantages

becomes one of retaining the optional paths which result afi PPA over traditional admission control based on WCET

the smallest transformed program. analysis. First, no knowledge beyond the control flow strrect
These techniques can apply to both acyclic and cyclic codg,needed. Second, we can bound programs at budgets below

although our main interest is in cycles. In the case of a ¢gycke analytical WCET, such as when input restrictions render

techniques such as in [10] could provide trusted bounds same paths infeasible.

loop iterations. Where these techniques fail, the develope
can still assert, “This loop iterates 3 times; | don't care if
an exception is raised on a fourth iteration because it wonltl
happen.”

A similar difficulty arises in applying PPA to programs [2]
which contain function calls. A function call has no place
within a CFG. In our current work, we have inlined all funetio
calls, as is common practice in packet processing code when
optimizing heavily for speed. However, we believe that thid3l
difficulty can also be overcome by extending our base PPA
algorithm to use infeasible path labels to assert validrnetu
addresses. (4]

Another difficulty arises when considering code emission.
The bounded CFGs we generate cannot be directly emittgsi
as executables. Our method occasionally yields CFGs where
multiple copies of a vertex “fall through” to the sansingle
copy of a subsequent vertex. Since this is not possible in rea
executables, additional research is necessary to corvert t [6]
executable form. We believe that a combination of techréque
can surmount this difficulty. Limited additional duplicati [7]
can solve most multiple fall-through cases. In other cases,
expect to be able to prove that the insertion of an explicifs]
branch instruction will not violate our bounds.

Our current implementation does not perform code emission
from bounded CFGs. We plan to develop a complete syste
as a proof of concept, from real code to executable code.

In our real system, we expect to examine other timin
factors beyond computation. The IXP 2800 processor suspol?t
primitives for asynchronous memory 1/O, along with up to 8
hardware thread contexts with single-cycle context sweisch
Our programs usually have both tight computational cyc%ll
budgets as well as larger, coarse-granularity, memoryndste
budgets. In practice, our system will need to demonstrdi€l
the ability to bound memory latency budgets as well 383
computational budgets.

VIIl. CONCLUSION [14]

We have demonstrated a new technique for admissigs]
control of untrusted programs, Partial Program Admission.
The “all or nothing” limitation of traditional admission otrol
requires that we prove that an entire program is safe before
admission, even when the “unsafe” parts correspond toinfea
sible execution paths. Under PPA, we can admit just those
portions of the program which are safe, and exclude portions
of the program where safety proofs are impractical.

We have also demonstrated an implementation of a PPA
algorithm for bounding the execution time of untrusted pro-
grams, and have proven its utility on real programs from the
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