

 - 1 -

Performance-Engineered Network Overlays for
High Quality Interaction in Virtual Worlds

Mart Haitjema

Washington University

+1-314-935-6124
mah5@arl.wustl.edu

Ritun Patney
Washington University

+1-314-935-4306
ritun@arl.wustl.edu

Jonathan Turner
Washington University

+1-314-935-8552
jon.turner@wustl.edu

Charlie Wiseman
Washington University

+1-314-935-4586

wiseman@wustl.edu

John DeHart
Washington University

+1-314-935-7329

jdd@arl.wustl.edu

ABSTRACT

Overlay hosting systems such as PlanetLab, and cloud

computing environments such as Amazon’s EC2, provide

shared infrastructures within which new applications can be

developed and deployed on a global scale. This paper ex-

plores how systems of this sort can be used to enable ad-

vanced network services and sophisticated applications that

use those services to enhance performance and provide a

high quality user experience. Specifically, we investigate

how advanced overlay hosting environments can be used to

provide network services that enable scalable virtual world

applications and other large-scale distributed applications

requiring consistent, real-time performance. We propose a

novel network architecture called Forest built around per-

session tree-structured communication channels that we

call comtrees. Comtrees are provisioned and support both

unicast and multicast packet delivery. The multicast

mechanism is designed to be highly scalable and light-

weight enough to support the rapid changes to multicast

subscriptions needed for efficient support of state updates

within virtual worlds. We evaluate performance using a

combination of analysis and experimental measurement of

a partial system prototype that supports fully functional

distributed game sessions. Our results provide the data

needed to enable accurate projections of performance for a

variety of session and system configurations.

Keywords. network games, overlay networks, network

processors, virtual worlds, cloud computing

1. INTRODUCTION

Network overlays have become an important tool for im-

plementing Internet applications that require advanced

services not available in the public Internet. While content-

delivery networks provide the most prominent example of

the commercial application of overlays [DI02, KO04],

systems researchers have developed a variety of experi-

mental overlay applications, demonstrating that the overlay

approach can be an effective method for deploying a broad

range of innovative systems [FR04, RH05, ST02]. Rising

traffic volumes in overlay networks, and growing interest

in the use of overlays for applications requiring consistent

quality of service, make the performance of overlay nodes

and overlay hosting services an issue of growing impor-

tance. Research testbeds such as Emulab [WH02] and Pla-

netLab [PE02] enable the development of experimental

systems using overlay techniques but have been ineffective

as service delivery vehicles, leading to efforts to create

overlay hosting platforms that can support “internet-scale

traffic volumes with router-like performance” [TU07].

NSF’s GENI initiative [GENI] seeks to create a large-scale

overlay hosting service that can support “at-scale” deploy-

ment of new network services and applications.

While the academic research community has been

working to develop virtualized network testbeds capable of

supporting multiple overlay networks, industry has been

developing large-scale cloud computing infrastructures for

similar purposes. While cloud computing is oriented more

towards the delivery of scalable web services than ad-

vanced network services, it is built on much of the same

technology base as the network testbeds. The scale and low

cost of these cloud-computing infrastructures makes them a

promising venue for the development of new applications

based on overlay methods, potentially leading to more

rapid innovation in advanced network services and applica-

tions. Services, such as Amazon’s EC2 give developers a

high degree of control over their “in-cloud” computing

infrastructure, enabling developers to engineer systems that

deliver complex services effectively, while allowing them

to match the deployed resources to user demand on an

hour-by-hour basis.

 - 2 -

This paper is part of a larger research agenda centering

on the use of shared infrastructures such as those provided

by overlay hosting and cloud computing services. We are

particularly concerned with applications for which a high

quality user-experience depends on non-stop delivery of

potentially complex, multimedia data streams. Such appli-

cations must be engineered to deliver consistent perform-

ance using a combination of dynamic provisioning

mechanisms that respond to changing traffic loads and

session-level resource-allocation mechanisms. Here, we

explore the application of performance-engineered overlays

to support high quality interaction in virtual worlds. We

focus on overlays for highly interactive games, such as the

first-person shooter genre, as these provide a readily acces-

sible application testbed that exhibits very demanding per-

formance requirements. However, we are also interested in

the use of virtual worlds to support real-world collabora-

tion, and this has led us to structure the underlying network

services in a more general way, than we might, if we were

concerned only with first-person shooters.

The rest of this paper is structured as follows. In Sec-

tion 2, we describe the characteristics of virtual world ap-

plications as well as that of the overlay environment needed

to support these applications. Section 3 describes the Forest

overlay network architecture, and the services it provides.

In Section 4, we describe a prototype implementation of the

system with a distributed first-person shooter game that we

adapted to use Forest. We evaluate the performance of the

prototype in section 5 and evaluate the inherent scalability

of the network architecture. Section 6 contains a discussion

of related research and we close with a few remarks about

the implications of our work and some future directions in

Section 7.

2. DESIGN CONSIDERATIONS

2.1. Application Characteristics

We are primarily concerned with the network level services

needed to support interactive virtual environments. How-

ever, we need some understanding of the application in

order to make informed choices for the network services.

Virtual worlds are used in a variety of applications,

from fast-paced first-person shooter games to role-playing

games and socially-oriented worlds such as Second Life

[RO03]. One important distinction among the different

types of virtual worlds is the degree of interactivity and the

degree to which consistent performance is essential to user

satisfaction. The first-person shooters (FPS) are arguably

the most demanding in this respect. Even small delays in

the reactions of avatars to user input can make games diffi-

cult to play, causing users to lose interest. [CL06] quanti-

fied these delay requirements and found that the threshold

latency for FPS games was about 100 ms, while it was

about 500 ms for role-playing games and as much as 1000

ms for real-time strategy games. While some of these other

classes of virtual worlds are relatively forgiving, more

consistent performance could also significantly improve

their users’ satisfaction. As audio starts playing a larger

role in such virtual worlds, consistent performance can be

expected to become even more important.

First-person shooter games are typically implemented

using a single server to support client machines for a few

tens of users. Client machines accept user input, render the

graphics for the virtual world and interact with the servers.

The single-server approach is even used for online games

with large user populations. These systems typically divide

users among distinct copies of the virtual world with a

single server supporting the users in each copy.

In systems where multiple servers cooperate to imple-

ment a single virtual world, the servers must interact with

each other to share state information. While the use of

multiple servers enables single sessions to have large num-

bers of users, it does bring with it significant scaling chal-

lenges. One of the primary issues facing the designer of a

virtual world that uses multiple servers is how to divide the

workload among the servers and keep the load on different

servers balanced. The most commonly used approach is to

divide the virtual world into regions and assign each region

to a server [DE06, RO03]. Each server is responsible for

maintaining the state of the users within its region. Since

users mostly interact with other users in the same region,

this approach reduces the amount of communication re-

quired among servers. On the other hand, as users move

from region to region in the virtual world, the responsibility

for maintaining their state must also move, and since users

are free to move anywhere in the virtual world, servers can

easily become overloaded if too many users crowd into the

same region.

Another way to distribute the load is to make a fixed

assignment of users to servers [BH06]. This approach is

well-suited to first-person shooters, as it gives the system

more control over the per-server load, and if the servers are

distributed geographically, it allows users to be assigned to

servers that are physically close to them. Since users’ per-

ception of system performance is determined primarily by

the responsiveness of their own avatars to their input, the

assignment of users to nearby servers can significantly

improve performance from a user perspective. At the same

time, it does increase the amount of interaction required

among servers, as users on different servers may be close to

one another in the virtual world, requiring their servers to

exchange state updates to enable their interaction.

An important consideration in many virtual world ap-

plications is the provisioning of environmentally accurate

audio. Today, this is of primary importance for virtual

worlds oriented towards social interaction, but it can be

expected to play a larger role in other types of virtual

worlds in the future. High quality audio can enable much

more natural interaction among users and can significantly

 - 3 -

enhance their experience. However, delivering high quality

audio presents additional challenges, as users must be able

to receive unique audio mixes based on the audio produced

by users (or other sources) in their immediate vicinity with-

in the virtual world.

An overlay network supporting virtual worlds should

support multiple approaches to managing system state, in

order to avoid constraining the higher level application

design, and to enable different kinds of virtual worlds to

share a common set of network services. At the same time,

it’s useful to focus on specific usage scenarios, to enable

informed choices among design alternatives. Since the

assignment of users to servers based on physical proximity

places the greatest demands on the overlay network serv-

ices, we focus our attention on that approach. At the same

time, we have taken care to avoid making the network

services directly tied to any one approach.

In general, regardless of the higher level application

design, each virtual world will be implemented by a set of

core components: clients, servers, and overlay routers.

Clients are individual user machines responsible for accept-

ing user input and rendering the virtual world on the user’s

display. Each client interacts with one of a number of serv-

ers. The servers’ job is to interact with their assigned cli-

ents, maintain their clients’ state information and to share

that information with other servers. Servers may also pro-

vide clients with information about the virtual world, al-

though in cases where the virtual world is static, that

information may be pre-loaded on the clients. Overlay

routers provide network services in support of the clients

and servers and these services are our primary focus.

2.2. Overlay Network Services

Since we are interested in supporting virtual worlds that are

highly interactive and require consistent performance, it

makes sense for the overlay network to support resource

provisioning, so that each session has the network re-

sources needed to ensure that its users have a satisfying

experience. This means that each session must have an

assigned amount of network bandwidth and processing

resources on the overlay routers. Its real-time access to

these provisioned resources must be guaranteed using traf-

fic isolation mechanisms, such as weighted fair-queueing

with per session queues, or something similar. Session

resources are assigned based on the number of users, so in

the absence of sufficient system resources, new users at-

tempting to join a session in progress can be denied access

if necessary, to ensure a high quality user experience for

those users in the session.

Since the delivery of state update information is a ma-

jor part of the overlay network’s role, it’s important to

make the delivery of state updates as efficient as possible.

Since many servers may require updates for a particular

user, the overlay network should provide an efficient multi-

cast mechanism for distributing updates among interested

servers. Since servers’ needs for specific information can

change frequently, as users move around the virtual world,

it is also important to support efficient subscription to mul-

ticast groups and to enable servers to subscribe to many

different groups at the same time. The precise way that

servers use multicast groups may vary among specific high

level application designs, but the provision of a flexible,

rapidly configurable multicast service can be broadly use-

ful.

It’s worth noting that overlay-based multicast, while

useful, is not essential. Distributed game systems can be,

and have been built, using only unicast packet delivery, so

it’s worth considering the question of whether multicast

provides sufficient benefit to justify its inclusion as a core

overlay network service. Multicast is useful primarily in

two ways. First, it reduces the number of packets that a

server must send. If a typical user is in view of an average

of k other users, then a session involving n users will re-

quire the delivery of kn state updates during each update

interval. Since k is typically fairly small (4-8), the advan-

tage provided by multicast is limited, and since each server

must receive an average of k updates per user in any case,

the reduction in packet processing load at a server is at

most a factor of two. However, in some virtual world envi-

ronments, there can be individual users whose state updates

are required by an unusually large number of others. This

can make the peak load on a server substantially larger than

the average, and in order to deliver consistent performance,

sessions must be provisioned based on the expected peak

load. This can significantly reduce the number of clients

that a server can support, raising overall system costs. In-

deed, some peer-to-peer game systems implement a form of

application-layer multicast in order to cope with this peak

loading effect [BH08]. Of course this also raises the ques-

tion of users that must receive updates from an unusually

large number of other users. Reference [BH08] also shows

how to handle such situations by taking advantage of users’

inability to focus on more than a few other users at a time.

Their system delivers full-rate state updates for only the

few “most important” users, while providing reduced up-

date rates for those that are less important. They show that

this technique effectively restrains the peak load on servers

with only a limited impact on user-perceived performance.

The second way in which multicast is useful is that it

reduces network bandwidth. There are two aspects to this,

the average bandwidth used and the bandwidth that must be

provisioned to ensure consistent performance. We examine

this in section 3.5, where we find that for representative

configurations, multicast distribution of state updates can

reduce the average cost by a factor of two or more and the

cost of the required provisioned capacity by a factor of five

or more. We note in the next section that network band-

width accounts for a significant fraction of the cost of these

systems, so savings of this magnitude can be worthwhile.

 - 4 -

2.3. Cost Factors

When designing any system, it’s helpful to have an under-

standing of how different system resources contribute to the

overall cost. This is particularly important when consider-

ing how design choices may affect the relative quantities of

different types of resources that may be required. For over-

lay applications, there are three types of resources that are

of primary concern: the servers, the overlay routers and the

network bandwidth. In this section, we make some rough

estimates of the costs of different components in order to

get a sense of their relative contributions. We emphasize

that these are rough estimates only, and the absolute values

should not be taken too seriously. Our purpose in making

these estimates is to develop an understanding of the rela-

tive magnitude of different cost factors, so we that can

make more informed design trade-offs.

We start by considering the servers. Experience with

single server game systems tells us that in highly interac-

tive games, a single server can be expected to support a few

tens of users. Let us assume that a commodity server can

support 50 users and that the cost of acquiring and install-

ing the server is about $2,000 and that servers are replaced

every 24 months. This leads to a monthly cost of $1.67 per

user. As power is a significant cost factor in modern data

centers, we also include it in our estimate of the monthly

cost of maintaining a server. [KO07] studied the power

consumption of servers in the United States in 2007 and

found that the average volume server uses about 187 Watts

and when the power consumed by auxiliary equipment and

cooling is included this number roughly doubles. If we use

a more conservative estimate of 400 Watts with an average

price of industrial power at about 6.9 cents per kWh [EIA],

then we arrive at an electricity cost of approximately

$20.15 per month, or about 40 cents per user. Adding this

to the hardware cost we get a monthly cost per user of

$2.07.

To evaluate the cost of the overlay routers, we assume

that they are implemented using comparable commodity

server hardware, but with an efficient kernel-resident net-

working software subsystem such as Click [KO00]. Previ-

ously reported results show that IP routers implemented

with Click are capable of forwarding several hundred thou-

sand packets per second, even on single-core processors.

Recent work has also shown that when these systems are

re-engineered to take full advantage of modern multicore

servers, packet-forwarding rates in the millions of packets

per second can be achieved [EG08]. If overlay routers

forward packets at a conservative rate of 200 thousand per

second, and the system sends 20 packets per second for

each user, and these packets pass through an average of 10

overlay routers, then we need one router for every 1,000

users. This results in a monthly cost contribution of about

10 cents per user (including the cost of power).

The difference in the cost contribution of these two

components is striking. There are two factors at work here.

First, the servers have a heavier computational load, since

they must perform the physics simulation needed to deter-

mine the interactions among objects in the virtual world. In

addition, they must exchange packets with clients and other

servers. The second factor is significant in that their use of

user-space processing in a general-purpose operating sys-

tem makes it more difficult for them to deliver consistent

performance, which in turn means that their average utiliza-

tion cannot be very high. The overlay routers, on the other

hand, need only forward packets and because they have a

single function, can operate in the kernel and monopolize

the processing resources.

We note that routers can be implemented using Net-

work Processors (NP) systems, in place of conventional

processors. While NPs are generally more expensive, they

are engineered for packet processing, allowing them to

achieve significantly higher performance than conventional

processors. This can lead to improved overall cost-

performance. However, since it’s clear that the server cost

plays a much larger role than the router cost in the virtual

world application context, we don’t consider this alterna-

tive in detail.

The third system resource that should be considered is

network bandwidth, particularly wide-area network band-

width. It is more difficult to quantify this with precision,

but we note that ISPs such as Cogent offer leased wide-area

connections for approximately $10 per month per Mb/s

[TELE]. If the system sends 20 packets per second per user,

with an average packet length of 250 bytes, we consume an

average of 40 Kb/s per user. If each user’s packets are sent

over an equivalent of five wide area connections, each user

consumes 200 Kb/s of wide area bandwidth, resulting in a

monthly cost per user of $2.

These cost estimates while crude, do make it clear that

the largest contributors to the system cost are the servers

and the network bandwidth. This underscores the value of

multicast as a core overlay network service, since it reduces

the usage of wide area network bandwidth. Making the use

of multicast as efficient as possible is also clearly worth-

while, so long as we can do so without conflicting with the

objective of providing consistent performance to users.

The results also suggest that there may be opportuni-

ties for the overlay network to provide additional services

that allow servers to support more users. This opportunity

is inherently limited, since the servers’ major task of phys-

Figure 1: Rough cost estimates

 - 5 -

ics calculations cannot be reduced. However, to the extent

that communications overhead and processing of state

updates limit servers’ ability to support users, there may be

some potential to reduce server load. It’s also possible that

overlay routers could provide services that reduce the peak

load on servers, allowing them to operate at higher average

utilization levels.

3. FOREST ARCHITECTURE

Based on the considerations discussed above, we have

chosen to structure the overlay network around a core net-

work service that uses tree-structured communications

channels to support all types of communication. We refer to

these channels as comtrees. Comtrees are configured for

individual virtual world sessions and provide the frame-

work for distributing state updates among servers, as well

as for communication between servers and clients. Re-

sources are explicitly allocated to comtrees based on the

number of users and session-specific resource require-

ments. Forest also provides isolation mechanisms to ensure

that comtrees are always able to access the resources they

have been assigned. Separate comtrees are used for distrib-

uting control information not associated with individual

sessions, and are provisioned to ensure that the control

traffic is never blocked by contention from other traffic

sources.

3.1. COMTREES

Comtrees are the central primitive in Forest. While the

overlay network’s links will typically form a general graph,

a comtree uses a subset of the links that forms a tree. Each

application session using Forest is assigned its own comtree

and all communication for the session takes place within

this tree-structured channel (of course, applications may

use more than one comtree if appropriate). Comtrees sup-

port both unicast and multicast packet forwarding and op-

erate as independent logical networks. Unicast routing

information is acquired dynamically as a by-product of

packet forwarding, in a way that is similar to the learning

mechanisms used by Ethernet LANs. In the absence of

routing information needed to forward a packet, a Forest

router can forward the packet to all of a comtree’s incident

links (except of course, for the link on which the packet

was received). Packets forwarded in this way are marked

with a flag requesting routing information for the addressed

destination, which triggers a response containing the re-

quired information.

Since all multicast forwarding also occurs over the
tree, comtrees follow the shared tree approach to multicast

routing where all members of a multicast group use the

same shared tree to route multicast traffic. The alternative

approach is known as source-based trees, in which each

sender to a multicast group constructs its own shortest path

tree to all the other members of the multicast group. With

respect to multicast, a comtree represents a single shared

tree used for all multicast groups within the session. The

advantage of this approach is that it is straightforward to

support highly dynamic multicast groups as there is no
need to select routes for different multicast groups or for

different users in a group. Of course, the configuration of a

comtree for a session does require the selection of a tree

that can support the session, but the configuration (and re-

configuration) of the session’s comtree can occur on a

much longer time-scale than the configuration of multicast

groups within a session, which is driven by the movement

of user avatars within the virtual world.

Figure 2 shows an example comtree used to support a

session. The heavy-weight links define a tree connecting all

the overlay nodes involved in the session. Servers share

state updates over the comtree using multicast, while cli-

ents communicate to their assigned servers via unicast, as

indicated by the dashed connections. More precisely, pack-

ets from clients enter the overlay from the public Internet at

an overlay access point. The access point extracts a Forest

packet from the IP packet it is contained in, and checks the

Forest header information. These checks include a verifica-

tion that the Forest source address is consistent with the

source IP address and port number, and that the endpoint

with that source address is allowed to send packets on the

comtree specified in the packet header. The system can

optionally restrict a given client, to a single unicast destina-

tion address. This is useful to ensure that clients interact

only through their assigned servers. Client connect to the

overlay at the nearest available overlay router, in order to

minimize the reliance on public Internet connections. Serv-

ers may be located anywhere in the overlay infrastructure,

although for highly interactive sessions, are preferably

located close to their clients’ access points.

Comtrees are also used for distributing information

that is not associated with individual user sessions. For

example, a link-state style routing protocol for distributing

information about overlay network resources in Forest can

be efficiently implemented on top of a comtree. Here mul-

ticast groups can be used to support aggregation of routing

information, so that nodes can subscribe to detailed link-

state information for nearby overlay nodes, while receiving

coarser-grained information for more distant parts of the

Figure 2: Overlay Components

 - 6 -

network. Multiple comtrees can be configured to balance

traffic and provide protection against link and node fail-

ures.

3.2. Naming and Addressing

Users, sessions, and system components such as servers

and overlay routers are identified in the system by globally

unique, human-readable names. Comtrees are identified by

a unique 32 bit numerical identifier that is included in the

header of every packet sent on the comtree. Comtree ids are

flat global identifiers and imply no semantic information.

Endpoints may send packets using only comtree identifiers

for which they have been configured, and Forest routers

discard packets received from endpoints not configured to

use them.

Network endpoints and routers are each assigned a un-

icast address for use within the comtree. These addresses

implement a two level hierarchy to improve the scalability

of routing information. Specifically, each unicast address

has a “site” part that identifies a geographic location or

region and an “endpoint” part that identifies a particular

component within the site. A Forest router uses the site part

of the address to reach routers in other sites and uses the

endpoint part to reach components within its own site. We

require that all nodes in a comtree with the same site num-

ber form a subtree within the comtree topology. This allows

Forest routers to limit the amount unicast routing informa-

tion they must maintain per comtree. Since addresses are

local to a comtree, the number of unicast addresses needed

to support a comtree used by a virtual world is determined

primarily by the number of clients in that world. In this

context, 32 bits provides an ample supply of addresses,

while making a simple two level hierarchy sufficient for

routing scalability.

Multicast groups require their own addresses. In the

next section, we discuss how multicast packets are routed

in a scalable way. Here, we simply note that no location

information is required for multicast groups, so multicast

addresses are simply flat numerical identifiers. This leads

to a simple 32 bit address structure in which the high bit is

used to distinguish between unicast and multicast ad-

dresses. Unicast addresses divide the remaining 31 bits

between the site part (15 bits) and the endpoint part (16

bits). Multicast addresses use all 31 of the remaining bits to

identify a comtree-wide multicast group.

3.3. Scalable Multicast Routing

Before discussing the specifics of multicast routing, it’s

useful to consider a specific usage scenario. One way in

which servers can use multicast sessions to manage the

delivery of state updates is to associate a separate multicast

group with each region of the virtual world. A server sends

a state update for a given user with the multicast address of

the region currently occupied by the user’s avatar. Servers

can then subscribe to the multicast addresses for regions

that are “visible” to their users. As users move, servers

continuously update their subscriptions. Regions may have

a fixed size or may vary in size to match the structure of the

virtual world. The ratio of the number of regions to users

can vary, depending on exactly how regions are defined

and used, but we note that there is little value in having

more regions than users and that there are reasonable de-

signs in which the number of regions is comparable to the

number of users. We also note that subscriptions may

change rapidly. A server hosting 50 client machines might

maintain subscriptions for a few hundred regions, and may

add and remove a few tens of subscriptions per second. An

overlay router supporting 100 servers could be required to

process thousands of subscription requests per second,

making it essential that subscription processing be very

lightweight.

Since each session communicates over its own com-

tree, one way to implement multicast is simply to broadcast

every multicast packet to every overlay router in the com-

tree and let the routers deliver packets to their directly

attached endpoints based on local subscriptions (see left

panel of Figure 3). This has the advantage that each router

need only keep track of the subscriptions for its attached

endpoints, minimizing the required multicast routing state,

minimizing the subscription processing overhead and en-

suring rapid response to subscription requests. On the other

hand, it does require that multicast packets be distributed to

Forest routers whose servers have no interest in them, need-

lessly consuming network bandwidth in these cases.

Figure 3: Scalable multicast routing in tree-structured channels. (a) global distribution, (b) distribution to/from single core

router, (c) distribution to/from a core subtree

 - 7 -

An alternate approach is to define a central “core”

router in the session tree and configure each router with a

“pointer” telling it which of its incident links leads to the

core (see center panel of Figure 3). With this approach, all

multicast packets are sent to the core router, and subscrip-

tion requests are also forwarded towards the core router,

while adding multicast routing state at each router along the

path to the core. If a subscription request finds an overlay

node along this path that is already subscribed to the given

multicast, then the subscription is not propagated the rest of

the way to the core. The use of a core router for routing in a

shared multicast tree is not new and was first explored in

Core-Based Trees [BA93], although there are some differ-

ences in the way that Forest uses the basic idea of a multi-

cast core. In section 3.5 we show that using a core in

comtrees largely eliminates the excessive transmission of

unwanted multicast packets, while still allowing efficient

subscription processing. On the other hand, it can slow

down the response to subscription requests and places a

larger burden for handling multicast routing state on the

core router.

We have chosen a more general approach that can be

used to implement either of the above options, as well as

various intermediate points. In particular, we allow each

comtree to define a “core subtree” consisting of a subset of

its overlay routers (see right panel of Figure 3). Each router

outside the core has a pointer telling it how to reach the

core, and all multicast packets are sent towards the core and

distributed to all the routers in the core. Note that this can

be done without any multicast-specific routing state. Sub-

scriptions also flow towards the core, as described in the

previous paragraph and need never propagate any further

than the first core router. We note that a small core pro-

vides the most efficient use of bandwidth at the cost of

higher subscription processing overhead and slower re-

sponse to subscription requests.

There are a variety of ways one might select which

routers to include in the core. Perhaps the simplest ap-

proach is based on a specified maximum “distance” be-

tween an endpoint and its nearest core node; the distance

metric can be a function of both hop count and link delay.

The core can then be made as small as possible, consistent

with this constraint, providing a bound on the response time

to subscription requests. Alternatively, the core can be

adjusted dynamically, based on the subscription volume at

a node. We leave the detailed examination of these issues

to future work.

3.4. Resource Allocation

Resources are allocated to sessions, which grow and shrink

dynamically as users come and go. Some sessions may

involve a fairly small number of users and be of modest

duration. Others can become very large and last for days,

months or even years (e.g. Second Life).

3.4.1. Allocating Server Resources

Servers can typically support a few tens of users, al-

though the actual number will vary based on server capac-

ity and the specific application. Ideally, we would like to

have each server support just one session, as this maxi-

mizes the opportunity for sharing state among the users on

a server and reduces the performance penalties associated

with time-sharing a single server among multiple sessions.

At the same time, we would like to map users to servers

that are physically close to them. These two preferences

have the potential to conflict with each other, particularly

as users join and leave sessions that are in progress. We

don’t address the issue in detail here, but we note that the

time-sharing penalties can be substantially reduced by

implementing real-time scheduling mechanisms in the OS.

So long as the total server load is limited, good perform-

ance can be achieved in virtual world applications if each

virtual world process is guaranteed an opportunity to exe-

cute at least once every 20 ms. If the number of virtual

world applications running on a single processor is small

(say ten or less), this condition can be met, even using

conventional operating systems.

3.4.2. Capacity Provisioning of Comtrees

The allocation of network bandwidth to sessions can be

broken into two main parts. First, we have the traffic be-

tween clients and servers. This traffic is constrained to a

specific (and typically short) path within the session’s com-

tree and is predictable and continuous. This makes it

straightforward to allocate the appropriate bandwidth as

users are added and removed.

The provisioning of multicast bandwidth is somewhat

more complicated and depends both on the number of users

and the set of nodes that are assigned to the comtree’s mul-

ticast core. As a basis for this provisioning, we require that

each endpoint u specify a sending limit, !(u), and a receiv-

ing limit, "(u). These limits will be specific to the virtual

world application but we note that generally a server will

have a sending limit proportional to the number of users it

hosts. When determining its receiving limit, a server may

need to assume an upper bound on the number of users it

will receive state updates from concurrently. In fact, to

avoid overloading servers, the application must be designed

to limit the rate of arriving state updates to an amount that

is consistent with its processing capacity. So, the receive

limit arises naturally from the application’s need to ensure

real-time perfomance.

Given such limits, we can provision all the links in a

comtree so that they have the capacity to support any traffic

pattern that does not exceed the limits. It is up to the end-

points to ensure these limits are respected, which is reason-

able given that virtual world servers are resources in the

network designed to cooperate with one another. The prob-

lem of provisioning tree-structured communication chan-

nels with specified send/receive limits was studied in

 - 8 -

another context by Fingerhut in [FI94, FI97]. He showed

that one can provision the bandwidth on a link from router

x to router y as follows. First, let X be the set of endpoints

on x’s side of the link and let !(X) be the sum of the send

limits for the endpoints in X. Similarly, let Y be the set of

endpoints on y’s side of the link and let "(Y) be the sum of

the receive limits for the endpoints in Y. The bandwidth

required from x to y is then just the smaller of !(X) and

"(Y). Moreover, one can compute the required link capaci-

ties for all links in the tree, using a single tree traversal

requiring O(n) time, for a tree with n nodes. To account for

the use of a multicast core that receives copies of all multi-

cast packets, we need to make a small modification to this

procedure. Specifically, if there are any core routers on y’s

side of the link, the required bandwidth is !(X). Otherwise,

the required bandwidth is min{!(X), "(Y)}. If the links are

provisioned in this way, then the comtree is guaranteed to

have the capacity needed for any traffic pattern that does

not exceed the specified send and receive limits. It is worth

noting that the addition of a new user often affects only a

subset of the links in the comtree. In particular, if the core

consists of a single central node, the addition of a new user

affects links leading from the server assigned to the user to

the core and perhaps a few more beyond the core.

3.5. Selecting a Comtree Topology

As there are many ways that virtual worlds can be distrib-

uted, different applications using different approaches may

produce vastly different communication patterns. There-

fore, configuring a comtree for a session requires selecting

a subtree of the overlay network infrastructure that has

enough capacity to support arbitrary communication pat-

terns among network endpoints. This is a special case of

the constraint-based network design problem also studied

in [FI94, FI97, DU99]. It has been shown that in general,

this problem is NP-hard, using a reduction from the Steiner

tree problem. However, when the solutions are constrained

to be trees, we can find optimal or near-optimal solutions in

the cases most relevant to comtree configuration [FI94]. In

particular, if A is the sum of all the !() values and Z is the

sum of all the "() values, then for A=Z, the optimal solution

is a shortest path tree from some “central” vertex in the

overlay network to all endpoints that are to be included in

the comtree. Such a tree can be constructed by computing a

shortest path tree for the entire overlay network and then

pruning links not used to reach endpoints required for the

comtree. By trying all possible center vertices, we can find

the optimal solution in O(mn + n log n) time, where m is

the number of links in the overlay network infrastructure,

and n is the number of nodes. If A<Z, this shortest path tree

is not optimal, but is guaranteed to have a cost no more

than (1+Z/A)/2 times that of the least-cost tree.

While the prior work provides a solid basis for comtree

configuration, it leaves several issues to be addressed. First,

while reference [FI94] shows that shortest path trees are

within a constant factor of optimal when A<Z, it provides

no information about how to obtain better trees in this case.

This is the case we would expect to find in most distributed

virtual environments, as servers that share state using mul-

ticast will typically send far less than they receive. We find

that in cases where A is much smaller than Z, other trees

can substantially out-perform shortest path trees. We illus-

trate this with results from a simple experiment, shown in

Figure 4. For this experiment, we generated random trees

over n (=25) points distributed uniformly over a 2x2 square

centered at the origin. Trees were constructed, starting from

the most central vertex (that is, the one closest to the origin)

and provisioned to determine the cost. For each point we

assumed that there were n users transmitting state updates

to users at fanout other (randomly selected) points, where

the fanout was varied from 1 to 24 and each user had a send

limit of 1. The cost of each provisioned link was taken to

be its provisioned capacity times its length. Each data point

in the figure shows normalized average results from 50

independently generated random trees. We do not show

error bars, but standard deviations were computed and were

typically less than 10% of the mean values. Results for

three different trees are shown: shortest path trees, mini-

mum spanning trees and an intermediate tree constructed

using a variant of Prim’s minimum spanning tree algo-

rithm, with a bound on the maximum allowed “stretch”

with respect to distances from the tree root; we show the

results when the stretch is limited to 1.2 (note that con-

straining stretch to 1, yields shortest path trees, while al-

lowing it to be unbounded, yields minimum spanning

trees). The shortest path tree cost grows linearly with the

fanout, and is very close to the analytical bound. The

minimum spanning tree provides the best results for large

fanout, and the bounded stretch trees perform nearly as

well. We conjecture that a hybrid strategy, which mimics

the minimum spanning tree algorithm in the early stages,

and the shortest path tree algorithm in later stages, will out-

perform the “pure” strategies considered here.

The earlier work also does not address the use of a core
subtree for multicast packets. Core subtrees are useful,

Figure 4: Alternate comtree topologies

 - 9 -

because they can significantly reduce the amount of routing

state needed to “locate” a multicast group. This can be

particularly important for applications that use many small,

dynamic, multicast groups, such as distributed virtual
environments. On the other hand, the use of a core does

impose a network bandwidth cost. We have examined how

this cost changes with the size of the core, and compared

this to the cost of implementing multicast without a core.

We again generated random trees over n points distributed

uniformly over a 2x2 square centered at the origin. Trees

were constructed using the variant of Prim’s algorithm

mentioned earlier; for each case, several values of stretch

were evaluated and the one that produced the least expen-

sive tree for the given provisioning method was selected.

The results appear in figure 5. First, we note that when the
core consists of just the “center” node of the comtree, the

cost is essentially indistinguishable from the case where no

core is used. When the neighbors of the center node are

added to the core, there is some increase, but the difference

becomes negligible for larger fanouts. Larger cores lead to

higher cost, but the cost difference shrinks rapidly as the

ratio of receive limits to send limits grows. The curve la-

beled “unicast routes” shows the cost of routing traffic

from senders to receivers using direct paths (that is, the cost

was taken to be the Euclidean distance between sender and

receiver). This is actually slightly more efficient than mul-

ticast when the fanout is 2, but is significantly less efficient
for larger fanouts.

The prior work must also be extended to account for

capacity limits in the underlying substrate. One way to

incorporate capacity limits is to modify the tree construc-

tion algorithm to check capacity constraints as each new

link is added to the tree; if adding a link causes a constraint

to be exceeded (either for the given link or other links al-

ready in the tree), the link is marked as excluded and the

algorithm proceeds to consider alternate choices. In the

absence of capacity constraints, this produces trees that are

provably optimal or close to optimal. In the presence of

capacity constraints, there is no guarantee that this method

will produce a solution at all, even when a solution is

known to exist. However, it is a natural starting point for

algorithmic study of the capacity-constrained case, which

we plan to investigate further in future work.

Our strategy for provisioning comtree bandwidth can be

overly conservative in systems where there is a strong

locality to the communication patterns. This can cause it to

allocate more bandwidth than the application requires,

needlessly increasing cost. The constraint-based network

design framework is general enough to accommodate situa-

tions like this. For each endpoint, u, we define a neighbor-

hood Nu and specify a constraint !(u,Nu) on the amount of

traffic that can go from u to nodes outside Nu. Constraints

of the form "(u,Nu) are defined similarly. With these added

constraints, the objective for comtree selection is to find a

subtree of the overlay network infrastructure that can sup-

port any traffic pattern that satisfies both the original

send/receive constraints and these additional constraints.

We expect that these neighborhood constraints will often

be associated with clusters of nodes that are geographically

close to one another, leading to a natural hierarchy that

matches well with tree topologies. In future work, we will

study how comtree selection algorithms can be designed to

produce high quality solutions for cases like this.

Given that virtual world applications are highly sensi-

tive to network delay, it is worthwhile considering the cost,

in terms of delay, of routing traffic through the comtree.

While the use of a shared multicast tree allows servers to

join and leave many multicast groups very efficiently,

source-based multicast routing would have the minimal

possible delay between nodes since each node routes traffic

over its own shortest-path tree. However, since comtrees

are provisioned and isolated from one another, the primary

source of network delay is expected to be propagation

delay. Thus the difference in delay costs is roughly propor-

tional to the difference in path lengths. The comtree selec-

tion algorithm described in this section attempts to

constrain path lengths by including a stretch factor that

bounds the distance from any node to the root of the tree.

To verify that this approach gives an acceptable level of

delay, we use the same experiment where we constructed

comtrees in a 2x2 grid with 25 nodes. We produced a dif-

ferent set of comtree configurations for each value of

Figure 6: Delay cost in comtrees Figure 5: Alternate comtree topologies

 - 10 -

stretch and for each of the comtrees we recorded the path

lengths between all pairs of nodes. We also took the cost of

using shortest path trees as the Euclidian distance between

the nodes. Figure 6 shows that the average delay cost of

routing through the comtree in our 2x2 grid is about 1.5

(regardless of stretch) whereas the shortest path between

the nodes is approximately 1.04. The maximum distance

between any pair of nodes is , and the maximum delay

in the comtree is fairly close to this when the stretch factor

is small. As noted earlier a stretch factor of 1.2 produces

low provisioning costs, suggesting that one can limit the

maximum delay, while still keeping the provisioning cost

low. We note that while routing traffic within the comtree

may cause some nodes that are physically close to each

other to experience longer delays than they might other-

wise, the maximum delay is really the critical considera-

tion. We note that [VI08] provide a variety of strategies for

selecting shared multicast trees that minimize delay.

Since users may join and leave a virtual world session

over time, this implies that comtrees may need to be dy-

namically reconfigured to accommodate changes in the set

of endpoints. Most often, it will be possible to add an end-

point, through adjustments to the provisioned capacity of a

subset of the comtree links. In other cases, comtrees may

need to be restructured in order to accommodate new end-

points. In this case, the running application will need to

migrate from one comtree to another while minimizing the

impact on running applications. We plan to address this

issue carefully in future work.

4. APPLICATION TO AN FPS GAME

To obtain a deeper understanding of virtual world applica-

tions and how they can be effectively supported using ad-

vanced overlay network services, we have adapted an

existing distributed implementation of the popular first

person shooter game, Quake. We have chosen to focus on

FPS games for two reasons: (1) their fast-paced nature

means that they have demanding performance characteris-

tics that push the boundaries further than less interactive

virtual world applications, and (2) because there are avail-

able open-source software implementations that can be

adapted to our purposes. In this section we describe some

of the specific tradeoffs that have influenced our design,

and provide details of a prototype implementation of the

key overlay network services.

4.1. Distributed FPS Design

In Section 2.1 we described two approaches to distributing

load among servers in a distributed system for virtual

worlds. We have chosen to focus on the approach where

players are statically assigned to servers that are physically

nearby. This choice was made to help insure that servers

respond rapidly and consistently to user input. Because this

approach leads to higher server-to-server communication, it

also represents the more challenging scenario from a net-

working perspective. We have adapted software developed

for the Colyseus system [BH06] as our initial codebase, as

Colyseus follows a similar approach to distributing server

load, allowing us to use large parts of the Colyseus soft-

ware without modification.

Before describing our modifications, we present a brief

overview of Colyseus. In a typical FPS game, the terrain of

the virtual world, or ‘map’, is generally static for the dura-

tion of the game session. Therefore the game state can be

expressed as the state of all the mutable objects in the vir-

tual world, e.g. player avatars, missiles, health packs, etc.

In the Colyseus architecture, each server hosts a subset of

these objects, which are known as the server’s primary

objects. The assignment of objects to servers does not have

to be static, but the Colyseus designers note that object

migration can be very disruptive, making a static allocation

preferable. A Colsyeus server maintains the state and exe-

cutes the game logic for each of its primary objects. It is

also responsible for communicating with the clients whose

player avatars it hosts.

Since objects hosted on different servers are part of the

same virtual world, a Colyseus server keeps ‘replicas’ for

the objects hosted on other servers that its primary objects

may interact with. These replicas are weakly consistent

copies of the primary. If a server needs to change the state

of a replica, it must send a ‘remote update’ message to the

server hosting the primary to request the change. The server

hosting the primary keeps replicas loosely synchronized by

sending out state updates whenever the state of the primary

changes. Given the fast-paced nature of FPS games, objects

tend to change state rapidly causing these state update

messages to dominate the traffic among servers.

One issue raised by this approach is the need for an

“object discovery” mechanism, that is, a mechanism by

which a server can determine which objects, hosted on

other servers, it must keep replicas for. Generally the rules

of FPS games dictate that objects can only interact with

other objects that are in the same visible region of the game

world. Additionally, only “dynamic” objects such as player

avatars and missiles may interact with other objects. Ob-

jects such as health packs and ammunition are more static

and their game logic generally does not depend on nearby

objects. Therefore, Colyseus determines the “area-of-

interest” for its primaries by calculating the areas of the

map that are visible to its dynamic objects. Servers learn of

the objects they need regular updates for by periodically

publishing the locations of their own objects and subscrib-

ing to their objects’ areas-of-interest. In Colyseus, this

publish/subscribe system is implemented using a distrib-

uted hash table.

 - 11 -

Because Colyseus was designed to work over the com-

modity Internet, it relies on the unicast packet delivery

service that the Internet provides. Since we are operating

within in an overlay environment, we can exploit multicast

for more efficient distribution of state updates. Moreover,

by associating distinct multicast addresses with regions of

the virtual world, we can eliminate the need for Colyseus’

DHT-based object discovery mechanism. Servers simply

subscribe to the multicasts for the regions of interest to

their dynamic objects. It’s worth noting that multicasts

need not be used in this way. For example, one could as-

sign a multicast address to each dynamic object in the vir-

tual world, allowing servers to subscribe to the multicasts

for the objects of interest to them. However, one would

need to augment this with an object discovery mechanism

(possibly using multicast); associating multicasts to regions

allows us to avoid this.

Our approach raises a number of immediate issues,

however, which results in several new tradeoffs. First, state

updates do not contain the full state of an object, but rather

are delta-encoded for bandwidth efficiency. This means a

server will need to acquire the full state of the object before

it can maintain a replica. Secondly, state updates are only

sent when the state of an object changes and some more

static objects, such as health packs, may not change state

for long periods of time. Finally, Colyseus ensures replicas

remain consistent by explicitly acknowledging every state

update received. This last issue is problematical in a multi-

cast context, as it requires a scalable reliable multicast

service, which is considerably more complex than a simple

best-effort multicast. We have chosen to address these

issues by transmitting the full state of each object periodi-

cally, allowing a server to instantiate a replica by simply

waiting for the full update to arrive. Periodic full updates

also enable recovery from lost updates.

Since transmitting the full state of the object is rela-

tively expensive, the period between full state updates

represents a tradeoff. Retransmitting the full state more

frequently consumes more bandwidth but allows servers to

acquire replicas or recover from lost packets more quickly.

We have chosen to send full state updates for each object

once per second. In terms of object discovery latency, this

ensures that servers will have to wait an average of 0.5

seconds after subscribing to a multicast address before

receiving a copy of the object. This is comparable to the

latency seen by Colyseus using its object discovery mecha-

nism. Since the underlying network service supports band-

width reservation, congestion-induced packet loss can be

made very rare, minimizing the impact of delayed recovery

from packet loss.

Another design issue raised is how the game world

should be partitioned into regions. Ideally the map’s terrain

would be used to define a partitioning that minimizes visi-

ble boundaries among regions. This would reduce the num-

ber of regions needed to express an object’s area of interest,

thus reducing the overhead caused by multicast subscrip-

tions. In this paper we have taken the much simpler ap-

proach of defining regions using a 2D rectangular grid.

While this is less than ideal, it is worth evaluating since if

such a simple approach proves satisfactory then there is not

much point in pursuing more sophisticated methods. With

this approach, the granularity of the grid, i.e. the number of

regions used, represents a second tradeoff in the application

design. Finer-grained partitioning means that servers can

more accurately express the interest of their primary objects

thus reducing the number of ‘uninteresting’ state updates

received (due to objects that are not visible to a given ob-

ject, but whose regions are partially visible). On the other

hand, subscribing to more regions increases the multicast

control overhead and has the potential to make area-of-

interest calculation for objects more expensive.

4.2. Experimental Prototype

Our ultimate objective is to implement Forest within a high

performance overlay hosting environment, such as the one

being developed for NSF’s GENI initiative [GE06]. We are

also exploring the possibility of deployment within com-

mercial cloud computing infrastructures [EC2]. As a first

step, we are using Washington University’s Open Network

Lab [ONL] as a prototyping environment. ONL has re-

cently been expanded to include network processor (NP)

based routers with a flexible plugin subsystem for experi-

mental extensions. This makes it a natural testbed for GENI

Figure 7: Data plane of the ONL router [Reproduced with permission from WI08]

Figure xxx

 - 12 -

applications, since it is likely that GENI will support over-

lays using similar NP-based components.

The Open Network Lab is an Internet-accessible net-

work testbed that is built around extensible gigabit routers

that can be “wired” to each other to form arbitrary network

topologies. It also provides a large number of PCs that can

be connected to the routers and can host applications that

communicate over the configured experimental network.

The routers can be modified through the insertion of user-

supplied plugins and we use this facility to prototype the

core features of the comtree such as the multicast distribu-

tion of state updates and the associated dynamic subscrip-

tion mechanism.

In this initial prototype, we have deferred the network

control needed to create and reconfigure comtrees. This

allows us to focus on the aspects of the system design that

most directly affect the performance of the data path. In our

experiments, we have also chosen to configure the multi-

cast core to include all overlay routers, in order to minimize

subscription processing overheads. This allows us to sim-

plify the prototype implementation since subscriptions need

not be propagated beyond the “first-hop” router.

Before describing the implementation of our plugin we

provide a brief overview of ONL’s NP-based routers

(NPRs) but we refer the reader to [WI08] for a full discus-

sion. The NPRs are constructed using Radisys Network

Processor blades that host a pair of Intel IXP 2800 NPs.

Each NP subsystem contains three banks of SDRAM, four

banks of QDR SRAM, and they share a Ternary Content

Addressable Memory (TCAM). The blade also has ten 1-

gigabit data interfaces, which are divided between the two

NPs, allowing them each to be used as a five port routers.

The IXP 2800 has one xScale management processor

and 16 multi-threaded Micro-Engines (ME), which do the

bulk of the packet processing. The micro-engines support

efficient pipeline operations, but can be used to support

arbitrary software structures. The data path of the router is

shown in figure 7. As packets come in, they are stored in

DRAM and a packet reference, which includes the meta-

data needed for a route lookup, is passed through the pipe-

line for processing. The TCAM is used primarily for route

lookups. The user can also install filters in the TCAM to

direct packets to specific queues, outgoing ports, or to

plugins. A filter can be used to match a specific protocol

(TCP, UDP, or ICMP), a specific source or destination port

associated with the protocol, or any prefix of the incoming

packet’s source or destination IP address. The SRAM is

used primarily for lookup tables, linked list queues, and as

‘scratch’ memory for user plugins.

In this ONL routers, five MEs have been set-aside as

‘plugin’ micro-engines that run user code. Each plugin ME

can be loaded with code separately so that a user can have

up to five different plugins. In addition, there are five ring

buffers, implemented in SRAM, that feed packets into the

plugins. As mentioned above, filters can be installed to

direct traffic to the plugins by delivering packets to any one

of the ring buffers. Once the plugin is done processing a

packet, it may direct the packet to a specific output queue

or it may defer the routing decision to the router and let the

router match the packet to the TCAM a second time.

With this background, we briefly describe the imple-

mentation of our Forest plugin. The plugin implements the

essential data path functions of a Forest router, including

the forwarding of unicast and multicast packets, and the

processing of multicast subscription packets. Multiple

copies of the plugin can be installed to work in tandem,

reading packets from the same ring buffer. The current

prototype uses a relatively simplistic approach to managing

multicast subscription state. Specifically, it uses the mem-

ory available for multicast state as a two-dimensional ma-

trix indexed by the comtree id and the multicast destination

address. Each entry in this matrix is a bit vector specifying

the outputs that matching packets should be forwarded to.

The range of comtree ids and multicast destination ad-

dresses is constrained to allow the entire matrix to fit in the

available memory space. A more general approach would

be to use a hash table, but we have taken the simpler ap-

proach in this initial evaluation.

While the NPR provides efficient support for IP multi-

cast, we do not use these mechanisms, as we are prototyp-

ing an overlay environment in which multicast is provided

as an overlay service. Since the plugin must direct each

copy of a multicast packet to distinct destination addresses,

it must copy the payloads explicitly, rather than simply

copying a packet reference. As a result, our plugin repli-

cates the packet payload, assigns each copy the appropriate

destination address, and has the copies reclassified by the

router to direct them to the correct output queue. This

means that the “Parse, Lookup, and Copy” (PLC) block,

which performs the classification step, must process each

outgoing copy of each state update packet, in addition to

the arriving packet.

5. EVALUATION

In this section, we evaluate the performance of the proto-

type Forest implementation and an FPS game application

that uses its services to support large game sessions.

5.1. Router Microbenchmarks

We start by considering the raw packet processing per-

formance of the Forest routers. As discussed above, the

ONL implementation of the Forest router uses up to five

micro-engines to implement the processing required for

forwarding state update packets and for subscription proc-

essing. We start with results for a single micro-engine for-

warding state updates. We considered two cases. In the first

case we measured throughput for multicast traffic with a

fanout of 1. Here traffic from five input ports is merged and

forwarded out a single port. In this case the router is able to

 - 13 -

forward packets at a maximum rate of 1.95 million per

second for a packet payload size of 150 bytes. Our Forest

protocol header adds another 32 bytes and the UDP-IP and

Ethernet headers add roughly another 66 bytes. The result-

ing output data rate is about 3.9 Gb/s or 77% of the output

link capacity. As the payload size increases, the packet

processing rate drops, while the data rate increases, with

the output links saturating for payload lengths above 250

bytes. For the second case we adjusted the fanout to 4 (the

maximum for our 5 port router) by having the traffic re-

ceived at each port be forwarded out all four of the other

ports. We found that the output rate in this case was essen-

tially the same as for the fanout 1 case, suggesting that the

extra work required to copy multicast packets is balanced

by the reduced input rate required to produce a given output

rate. We also note that one of the factors limiting the rou-

ter’s performance is the requirement that the outgoing mul-

ticast packets have to be reclassified because of the change

in destination IP address. For this reason, when we go from

using a single micro-engine to using all five, the maximum

packet-processing rate increases by less than 20%. This

suggests that the router could likely accommodate the more

complex packet processing that would be required in a

realistic implementation that uses a hash table lookup in

place of the simple direct lookup used here.

We evaluated the router’s ability to process subscrip-

tion messages by subjecting it to a load that consisted en-

tirely of subscription packets, arriving on all input ports.

We varied the number of subscription changes in each

packet from 1 to 350 and found that the peak packet proc-

essing rate went from 3.15 million packets per second

down to 70 thousand, while the resulting subscription proc-

essing rate went from 3.15 million up to 24.5 million. In the

next section, we find that the subscription rate per user in

actual game sessions is generally less than five per second,

so a router can process the subscription requests for more

than 50 thousand players, while using less than 10% of the

its subscription processing capacity. However, it must be

noted that this is for a simplified subscription processing

mechanism, which neither propagates subscriptions, nor

forwards acknowledgments to servers.

5.2. Performance of FPS Game Sessions

In this section, we study the performance of FPS game

sessions that use Forest services to distribute state updates.

We are interested in understanding how various application

metrics are affected by the number of users in a session, the

number of users per server and the number of regions used

to partition the virtual world.

We start by considering a configuration using a single

router with four servers, and study how various metrics

change as we increase the number of players per server

from 1 to 25. For this experiment, we divided the game

world into 36 uniform regions. The results are summarized

in Figure 8. We show four performance metrics (1) the

server CPU utilization (as reported by the operating sys-

tem), (2) the fanin per server (that is, the number of users

for which a server receives state updates), (3) the number

of regions of interest to a server (that is, the number of

regions it is subscribed to) and (4) the subscription rate per

server (the number of subscription changes per second).

The values on the chart are averages over a five minute

game session using simulated users (bots).

Let’s focus first on fanin. We note that when there is

just one user per server, users spend much of their time in

isolated parts of the game world and have no interaction.

This leads to a fanin less than one. As the number of users

increases, the fanin grows for two reasons: first, because

the fanin per user increases as there are more users to inter-

act with and second, because the number of users per server

increases. Consequently, the fanin grows super-linearly, for

small numbers of users. However, as the fanin starts to

approach the total number of users in the session, the

growth rate becomes linear and then sub-linear, with a

maximum of about 65, when the total number of players in

the session is 100. The regions of interest metric also grows

with the number of players per server, growing more rap-

idly than the fanin for small numbers of users and then

more slowly, as the number of subscribed regions starts

approaching the total of 36. The subscription rate reaches

its maximum value of about five changes per second when

there are 10-12 users per server. Note that for this number

Figure 8: Impact of Number of Users on FPS Performance

Figure 9: Traffic Volumes

 - 14 -

of users, the typical server is subscribed to more than half

the regions of the game world, so changes to the set of

subscribed regions stabilizes and starts to decline at this

point.

Finally, let’s consider CPU utilization. We note that for

a single user per server, the CPU utilization is 5% and that

the addition of three more users per server increases the

CPU utilization to 11%, suggesting that there is an initial

overhead of about 3% and then a cost of about 2% per

player for doing the game physics calculations. As the

number of players grows further, the processing of state

update messages starts to have a significant impact, causing

a more rapid increase. We observe that if the only thing the

CPU had to do was perform the game physics calculations,

it could handle 25 users with just 50% of the CPU capacity.

For the larger sessions, the CPU utilization is about double

what we would expect for the game physics alone, provid-

ing a measure of the cost of distributing the game over

multiple servers. We also note that improvements in han-

dling of state updates can be expected to improve the server

performance by no more than a factor of two.

We also recorded maximum values for the various met-

rics. When the number users is small, the maximum fanin

can be four times the average, but as the number of users

grows, the ratio of the max to the average drops to less than

1.2. The subscription rate is the most variable metric with a

maximum that can be 4 to 7 times larger than the average.

Figure 9 shows how the traffic volumes vary with the

number of players per server. We show results for the mul-

ticast state updates (in MB) and for the subscription traffic

(in KB). The numbers reported are the total traffic volume

over all servers for a five minute game session. First, note

that the state update traffic dominates by a factor of 100 or

more. For the state update traffic, the sending volume in-

creases linearly with the number of servers, while the re-

ceived volume tapers off as the number of users gets large.

The received traffic is typically twice as large as the sent

traffic. The state update packets have a typical payload size

of about 290 byte, while the subscription packets have a

typical payload size of about 12 bytes.

We now turn to a configuration with 100 users distrib-

uted across 20 servers linked by eight routers. In this case,

we focus on how the various performance metrics change

as the number of regions in the game is increased from 1 to

144, as shown in figure 10. Starting again with fanin, we

note that for a single region, each server receives state

updates from all 95 users on the other servers, and as the

number of regions grows, the fanin drops sharply before

leveling off at about 40. The CPU utilization drops along

with the fanin, leveling off at a utilization of about 30%

when the number of regions is large. The regions of interest

metric increases roughly linearly with the number of re-

gions and at 144 regions, we note that the average server is

subscribed to roughly 25% of the regions of the game

world. The subscription rate grows with the number of

regions, topping out at about 20 subscription changes per

second. We note again that the subscription rate is the most

variable metric and for 144 regions, the maximum sub-

scription rate is about 90 per second.

The computers used to implement the servers in these

experiments are 2 GHz AMD Opterons running Linux

version 2.6.21. Each is equipped with 512 MB of RAM and

has a 1 Gb/s Ethernet interface. We used Quake’s built-in

bots to simulate players using the default diffi-

culty/intelligence setting. We also used a fairly large cus-

tom map that consists largely of corridors and small rooms.

We should note that while our overlay network could

have accommodated substantially large game sessions, we

found that limitations in the Quake 3 and Colyseus code

base made it difficult to scale to sessions with much more

than 100 users. While we made some efforts to address

these limitations, we concluded that the required effort was

not justified, given that our principal interest is in the scal-

ing characteristics of the overlay network services, rather

than this particular FPS game.

5.3. Scalability of Overlay Forwarding

Next, we discuss how some of our basic mechanisms scale,

as the number of users in a session grows. We start by

noting that our choice of a comtree, which is a tree-

structured communication channel, leads to some intrinsic

limitations, as the router at the root of the comtree must

have the capacity to forward state update packets from all

senders. If Forest routers are implemented using conven-

tional servers, we can expect packet forwarding rates of a

few hundred thousand packets per second for servers with a

single processor core and rates above one million for serv-

ers with eight or more cores. Given a state update fre-

quency of 20 packets per second, a root router should be

able to forward the state update packets for between 10 and

100 thousand users. Larger-scale sessions are possible,

either using multiple comtrees for a single session or using

multiple servers connected by high performance switches

to implement high capacity routers serving a single session.

We don’t explore these options in detail here, instead limit-

Figure 10: Impact of number of regions on FPS performance

 - 15 -

ing ourselves to session sizes up to about 100 thousand

users.

The scalability of packet forwarding is limited by the

required routing state, in addition to the forwarding capac-

ity of the routers. Unicast and multicast routes can be

stored in a single hash table, where the hash is a function of

the comtree id and destination address. The table can be

stored in inexpensive DRAM, allowing millions of routes

to be supported at a reasonable cost. The use of two level

unicast addresses and tree-structured comtrees reduces the

number of unicast routes that are needed for each comtree.

Essentially, each router requires a route for each “foreign

site” and for each endpoint in the “local site”. For large

sessions, we expect the number of required unicast routes

to grow as the square root of the number of endpoints,

ensuring that the amount of unicast routing state remains

manageable. Routes are obtained dynamically by learning

addresses. Most unicast routes will be associated with cli-

ent/server traffic and routes will be established on the path

joining a client to its server the first time they communicate

with each other. Hence, the cost of acquiring the route is

relatively small, compared to the normal communication

that must take place between clients and servers.

The amount of multicast routing state required by a ses-

sion depends on the size of the core. The worst-case is a

single node core, since this requires the core node to main-

tain a multicast route for every multicast address. If we

associate a separate multicast address with every user in the

session (the option that uses the most multicast addresses),

the number of multicast routes the core node must support

is bounded by the number of users whose packets it for-

wards. Given that a router can economically support mil-

lions of routes, we expect the data forwarding requirements

to limit the router long before the memory required for

multicast routes becomes constraining. By a similar argu-

ment, the processing of subscription packets is unlikely to

limit scalability, since the volume of subscription traffic is

generally far smaller than the volume of data traffic.

6. RELATED WORK

This paper focuses primarily on overlay network services

tailored to support distributed virtual environments. Our

discussion, however, touches on a number of other aspects

related to the support of distributed virtual environments. In

particular, we have already described several methods for

load balancing in a distributed virtual environment and in

our game system we applied a region-based multicast tech-

nique to manage the interests of servers.

The use of a region-based multicast scheme has been

explored previously. Macedonia et al. [MA95] separates

objects in DIS simulations into separated spatial, temporal,

and categorical groups and associates these groups with IP

multicast addresses. For their spatial partitioning, they used

a similar region-based multicast approach except they used

hexagonal regions and calculated the regions in the object’s

area-of-interest by defining a simple fixed-size radius.

Kantawala et. al. [KA96] described a similar region-based

approach for DIS using a square grid of regions and ATM

multipoint connections.

A number of more sophisticated region-based interest

management techniques have been investigated such as

[AB98, FE02, HU04]. These approaches all offer more com-

plex methods for region partitioning that are intended to

make interest management more precise and minimize the

number of multicast addresses used. In our context, mini-

mizing the use of multicast addresses is a lesser concern, as

we have per session address spaces and lightweight mecha-

nisms for joining and leaving multicast groups.

Network services designed to support distributed virtual

environments have been explored in the active networking

context. The SANDS system [ZA02] uses active networks

to support interest management in the network infrastruc-

ture. In their approach, which they call “active interest

filtering”, the application uses a signaling protocol to install

interest filters in the active routers that describes the con-

tent the application is interested in (e.g. regions in the game

world). Packet payloads are then tagged with content de-

scriptors that the router uses to match against the subscrip-

tions of end hosts. Rajappan et al [RA03] augmented this

work to provide reliable multicast for distributed simula-

tions that are loss-sensitive. ATOM [GR00] describes an

approach to using active networking to provide a scalable

totally ordered multicast service and they cite games and

virtual environments as a motivation. Their network archi-

tecture is structured around using a sequencer node to pro-

vide a totally ordered multicast service. While ordered

multicast may be a useful service to applications that re-

quire a high degree of consistency, we did not include this

as a core network service in Forest.

We also note that the use of multiple core routers in

shared multicast trees has been proposed before but typi-

cally to address issues relating to routing in IP which is a

slightly different context. For instance, Distributed Core

Multicast [BL99], assumes a two-level network hierarchy

where there is a backbone network that connects multiple

area networks together. A “distributed core router” (DCR)

is assigned for each multicast group within a given area.

The DCR acts as the area’s local core for a multicast group

and it communicate with DCRs in other areas to determine

which areas have members in the multicast group. This

approach reduces the amount of multicast routing state

needed in backbone routers but it is also intended to avoid

the triangular routing problem and for limiting traffic

across expensive backbone links. While our approach using

a simple core subtree also reduces routing state for the core

routers, it does not involve signaling between the core

routers as our goal is to provide fast and efficient subscrip-

tions to many groups by limiting the amount of subscrip-

tion processing in the tree.

 - 16 -

The notion of overlay hosting services and networks

that are engineered to provide a consistent level of per-

formance has only recently received significant attention,

most notably in the context of NSF’s GENI initiative

[AN05, GE06]. The VINI system [BA06] has extended

PlanetLab, enabling users to reserve a specified fraction of

nodes and network bandwidth in a distributed overlay envi-

ronment. The SPP platform described in [TU07] seeks to

support higher performance provisioned overlays through a

scalable system architecture that incorporates multiple

servers and network processors. Amazon’s EC2 service

[EC2] makes some of the capabilities developed in Planet-

Lab and these more recent systems available in a commer-

cial setting.

7. CLOSING REMARKS

We have presented the design of Forest, a performance-

engineered network architecture to support distributed

virtual environments that require consistently high per-

formance. The network is based on tree-structured commu-

nication channels called comtrees that support both unicast

and multicast packet delivery. The system is designed to

support large-scale use of highly dynamic multicast groups

for efficient distribution of state updates. To demonstrate

the feasibility of the design and to assess its scalability we

implemented a partial prototype of our system using NP-

based routers and evaluated the performance of a distrib-

uted first-person shooter game which we modified to use

the provided overlay network services. Our results indicate

that there is no reason why systems based on this architec-

ture could not support sessions with tens of thousands of

users even in demanding virtual environments such as first-

person shooters.

While our initial results are encouraging, we have de-

ferred much of the network control and we intend to evalu-

ate some of the control issues in future work. In particular,

we need to develop a number of additional control proto-

cols such as the routing protocol used to distribute informa-

tion about the available capacity of links and overlay

routers. A signaling protocol also needs to be defined to

allow endpoints to create and modify comtrees as well as

an access protocol to allow registered users to connect new

endpoints to the Forest overlay.

There is also a rich set of open problems related to the

configuration and reconfiguration of comtrees. In section

3.5 we briefly discussed how the provisioning mechanisms

could be designed to accommodate capacity constraints,

and how they could use knowledge of traffic locality to

reduce the amount of bandwidth that must be provisioned.

Perhaps most importantly, we need to address the issue of

reconfiguring comtrees as endpoints are added or removed

and as the demands of the virtual world session changes

over time. We would also like to evaluate the benefits of

centralized vs. distributed comtree configuration as well as

investigate the use of comtrees to distribute control infor-

mation and provide fault tolerance.

We are also considering several possible extensions to

the core services that Forest provides. These might include

end-to-end support for reliable multicast, to make it easier

to implement applications with strong consistency require-

ments. Additionally we could offer high quality synchroni-

zation and synchronized packet delivery by having timing

information piggy-backed on all packets exchanged be-

tween neighboring routers. This can be useful to ensure

event ordering in distributed applications. Ideally we would

also like to evaluate a more complete deployment of Forest

in GENI and perhaps within Amazon’s EC2 computing

cloud.

Finally we note that the work presented here represents

part of a broader research agenda investigating the potential

of developing network architectures on shared infrastruc-

tures to support demanding applications. This work focuses

on supporting virtual environments, but the use of comtrees

provisioned to support individual users may have broader

applications. In particular we envision the use of Forest to

support audio and or video conferencing perhaps in con-

junction with virtual environments.

REFERENCES

[AB98] Abrams, H., K. Watson, M. Zyda. “Three-tiered interest

management for large-scale virtual environments,” In

Proc. Proceedings of the ACM symposium on Virtual real-

ity software and technology (VRST), 1998.

[BA93] Ballardie, T., P. Francis, J. Crowcroft. “Core Based Trees,”

In Proc. of SIGCOMM, 1993.

[BH06] Bharambe, A., J. Pang, S. Seshan. “Colyseus: A Distrib-

uted Architecture for Online Multiplayer Games,” In Proc.

Symposium on Networked Systems Design and Implemen-

tation (NSDI), 3/06.

[BH08] Bharambe, A., J. Douceur, J. Lorch, T. Moscibroda, J.

Pang, S. Seshan, X. Zhuang. “ Donnybrook: Enabling

Large-Scale, High-Speed, Peer-to-Peer Games,” in Pro-

ceedings of ACM SIGCOMM, 2008.

[BL99] Blazevic, L., and J. Le Boudec. “ Distributed Core Multi-

cast (DCM): a multicast routing protocol for many groups

with few receivers,” ACM SIGCOMM Computer Com-

munications Review, vol. 29, no. 5, 10/99.

[CH03] Chun, B., D. Culler, T. Roscoe, A. Bavier, L. Peterson, M.

Wawrzoniak, and M. Bowman. “PlanetLab: An Overlay

Testbed for Broad-Coverage Services,” ACM Computer

Communications Review, vol. 33, no. 3, 7/03.

[CL06] Claypool, M., and K. Claypool. “Latency and Player Ac-

tions in Online Games,” Communications of the ACM, vol.

49, no. 11, 11/06.

[DE06] Deen, G., M. Hammer, J. Bethencourt, I. Eiron, J. Thomas

and J. H. Kaufman. “Running Quake II on a Grid,” IBM

Systems Journal, 2006.

 - 17 -

[DI02] Dilley, J., B. Maggs, J. Parikh, H. Prokop, R. Sitaraman,

and B. Weihl. “Globally Distributed Content Delivery,”

IEEE Internet Computing, September/October 2002.

[DU99] Duffield, N., P. Goyal, and A. Greenberg. “A flexible

model for resource management in virtual private net-

works,” in ACM SIGCOMM, 1999.

[EC2] Amazon Elastic Computing Cloud. http://aws.ama-

zon.com/ec2/, 2009.

[EIA] Energy Information Administration. Average Retail Price

of Electricity to Ultimate Customers by End-Use Sector.
http://www.eia.doe.gov/cneaf/electricit

y/epm/table5_6_a.html

[EG08] Egi, Norbert, A. Greenhalgh, M. Handley, M. Hoerdt, F.

Huici, and L. Mathy. “Towards High Performance Virtual

Routers on Commodity Hardware,” Proceedings of ACM

CoNEXT, 10/08.

[FI94] Fingerhut, J. A. “Approximation Algorithms for Configur-

ing Nonblocking Communication Networks,” Washington

University doctoral dissertation, 5/1994. Available at

www.arl.wustl.edu/~jst/

[FI97] Fingerhut, J. A., S. Suri, and J. Turner. “Designing Least-

Cost Nonblocking Broadband Networks,” Journal of Algo-

rithms 1997, pp. 287-309.

[GR00] Graves, R., and I. Wakeman. “ATOM – Active Totally

Ordered Multicast,” In Proceedings of the Second Interna-

tional Working Conference on Active Networks (IWAN),

2000.

 [FR04] Freedman, M., E. Freudenthal and D. Mazières. “Democ-

ratizing Content Publication with Coral,” In Proc. 1st

USENIX/ACM Symposium on Networked Systems Design

and Implementation, 3/04.

[GE06] Global Environment for Network Innovations. http://

www.geni.net, 2009.

[FE02] Fiedler, S.,M. Wallner, and M. Weber. “A communication

architecture for massive multiplayer games,” In Proc. of

the 1st workshop on Network and system support for

games (NetGames), 2002.

[HU04] Hu, S. and Guan-Ming Liao. “Scalable peer-to-peer net-

worked virtual environment,” In Proc. of 3
rd

 ACM SIG-

COMM workshop on Network and system support for

games (NetGames), 2004.

 [KA96] Kantawala, Anshul, Gur Parulkar, John DeHart and Ted

Marz. “Supporting DIS Applications Using ATM Mul-

tipoint Connection Caching,” Proc. of Infocom, 1996.

[KO00] Kohler, E., R. Morris, B. Chen, J. Jannotti, and M. F.

Kaashoek. “The Click Modular Router,” Proc. of IEEE,

Special Issue on Evolution of Internet Technologies, 9/04.

[KO04] Kontothanassis, L. R. Sitaraman, J. Wein, D. Hong, R.

Kleinberg, B. Mancuso, D. Shaw and D. Stodolsky. “A

Transport Layer for Live Streaming in a Content Delivery

Network,” Proc. of the IEEE, Special Issue on Evolution of

Internet Technologies, 9/04.

[KO07] Koomey, J. G. “Estimating Total Power Consumption by

Servers in the U.S. and the World,” in
http://enterprise.amd.com/Downloads/svr

pwrusecompletefinal.pdf, 2007.

 [MA95] Macedonia, M., M. Zyda, D. Pratt, D. Brutzman, P.

Barham. “Exploiting Reality with Multicast Groups: A

Network Architecture for Large-scale Virtual Environ-

ments,” in VRAIS, 1995.

 [ONL] Open Network Lab. www.onl.wustl.edu, 2008.

 [PE02] Peterson, L., T. Anderson, D. Culler and T. Roscoe. "A

Blueprint for Introducing Disruptive Technology into the

Internet", Proc. of ACM HotNets-I Workshop, 10/2002.

[RA03] Rajappan, G. and M. Dalal. “Reliable Multicast with Ac-

tive Filtering for Distributed Simulations,” Military Com-

munications Conference Proceedings (MilCom), 2003.

[RA05] Radisys Corporation. “Promentum™ ATCA-7010 Data

Sheet,” product brief, available at www. radisys.com/files

/ATCA-7010_07-1283-01_0505_datasheet.pdf.

[RH05] Rhea, S., B. Godfrey, B. Karp, J. Kubiatowicz, S. Rat-

nasamy, S. Shenker, I. Stoica and H. Yu. “OpenDHT: A

Public DHT Service and Its Uses,” Proceedings of ACM

SIGCOMM, 9/2005.

[RO03] Rosedale, P., C. Ondrejka, “Player-Created Online Worlds

with Grid Computing and Streaming,” Gamasutra, 9/03.

[ST02] Stoica, I., D. Adkins, S. Zhuang, S. Shenker, S. Surana,

“Internet Indirection Infrastructure,” Proc. of ACM SIG-

COMM, 8/02.

[TELE] “Cogent throws down pricing gauntlet,” www. teleph-

ony onine.com/mag/telecom_cogent_

throws_down/, 2008.

[TU07] Turner, J., P. Crowley, J. DeHart, A. Freestone, B. Heller,

F. Kuhns, S. Kumar, J. Lockwood, J. Lu, M. Wilson, C.

Wiseman and D. Zar. “Supercharging PlanetLab – a High

Performance, Multi-Application, Overlay Network Plat-

form,” Proc. of SIGCOMM, 2007.

[VI08] Vik, K., P. Halvorsen, and C. Griwodz. “Multicast Tree

Diameter For Dynamic Distributed Interactive Applica-

tions,” Proc. of INFOCOM, 2008.

[WH02] White, B., J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,

M. Newbold, M. Hibler,C. Barb, and A. Joglekar. "An In-

tegrated Experimental Environment for Distributed Sys-

tems and Networks", Proceedings of the Fifth Symposium

on Operating Systems Design and Implementation,

12/2002.

[WI08] Wiseman, C., J. Turner, M. Becchi, P. Crowley, J. DeHart,

M. Haitjema, S. James, F. Kuhns, J. Lu, J. Parwatikar, R.

Patney, M. Wilson, K. Wong, D. Zar, “A Remotely Acce-

sible Network Processor-Based Router for Network Ex-

perimentation,” Proc. of ANCS, 2008

[ZA02] Zabele, S. M. Dorsch, Z. Ge, P. Ji, M. Keaton, J. Kurose,

J. Shapiro, D. Towsley. “SANDS: Specialized Active

Networking for Distributed Simulation”, Proc. of DARPA

Active Networks Conference and Exposition, 2002

	DepartmentName: Department of Computer Science & Engineering
	ReportNumber: 2009-18
	Date: June 8, 2009
	Email: Corresponding Author: mah5@arl.wustl.edu
	Notes:
	Footer1: Department of Computer Science & Engineering - Washington University in St. Louis
	Footer2: Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160
	Abstract: Abstract: Overlay hosting systems such as PlanetLab, and cloud computing environments such as Amazon™s EC2, provide shared infrastructures within which new applications can be developed and deployed on a global scale. This paper ex-plores how systems of this sort can be used to enable ad-vanced network services and sophisticated applications that use those services to enhance performance and provide a high quality user experience. Specifically, we investigate how advanced overlay hosting environments can be used to provide network services that enable scalable virtual world applications and other large-scale distributed applications requiring consistent, real-time performance. We propose a novel network architecture called Forest built around per-session tree-structured communication channels that we call comtrees. Comtrees are provisioned and support both unicast and multicast packet delivery. The multicast mechanism is designed to be highly scalable and light-weight enough to support the rapid changes to multicast subscriptions needed for efficient support of state updates within virtual worlds. We evaluate performance using a combination of analysis and experimental measurement of a partial system prototype that supports fully functional distributed game sessions. Our results provide the data needed to enable accurate projections of performance for a variety of session and system configurations.
	Title: Performance-Engineered Network Overlays for High Quality Interaction in Virtual Worlds
	Author: Authors: Mart Haitjema, Ritun Patney, Jon Turner, Charlie Wiseman, John DeHart

