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ABSTRACT 

Overlay hosting systems such as PlanetLab, and cloud 

computing environments such as Amazon’s EC2, provide 

shared infrastructures within which new applications can be 

developed and deployed on a global scale. This paper ex-

plores how systems of this sort can be used to enable ad-

vanced network services and sophisticated applications that 

use those services to enhance performance and provide a 

high quality user experience. Specifically, we investigate 

how advanced overlay hosting environments can be used to 

provide network services that enable scalable virtual world 

applications and other large-scale distributed applications 

requiring consistent, real-time performance. We propose a 

novel network architecture called Forest built around per-

session tree-structured communication channels that we 

call comtrees. Comtrees are provisioned and support both 

unicast and multicast packet delivery. The multicast 

mechanism is designed to be highly scalable and light-

weight enough to support the rapid changes to multicast 

subscriptions needed for efficient support of state updates 

within virtual worlds. We evaluate performance using a 

combination of analysis and experimental measurement of 

a partial system prototype that supports fully functional 

distributed game sessions. Our results provide the data 

needed to enable accurate projections of performance for a 

variety of session and system configurations. 

Keywords. network games, overlay networks, network 

processors, virtual worlds, cloud computing 

1. INTRODUCTION 

Network overlays have become an important tool for im-

plementing Internet applications that require advanced 

services not available in the public Internet. While content-

delivery networks provide the most prominent example of 

the commercial application of overlays [DI02, KO04], 

systems researchers have developed a variety of experi-

mental overlay applications, demonstrating that the overlay 

approach can be an effective method for deploying a broad 

range of innovative systems [FR04, RH05, ST02]. Rising 

traffic volumes in overlay networks, and growing interest 

in the use of overlays for applications requiring consistent 

quality of service, make the performance of overlay nodes 

and overlay hosting services an issue of growing impor-

tance. Research testbeds such as Emulab [WH02] and Pla-

netLab [PE02] enable the development of experimental 

systems using overlay techniques but have been ineffective 

as service delivery vehicles, leading to efforts to create 

overlay hosting platforms that can support “internet-scale 

traffic volumes with router-like performance” [TU07]. 

NSF’s GENI initiative [GENI] seeks to create a large-scale 

overlay hosting service that can support “at-scale” deploy-

ment of new network services and applications. 

While the academic research community has been 

working to develop virtualized network testbeds capable of 

supporting multiple overlay networks, industry has been 

developing large-scale cloud computing infrastructures for 

similar purposes. While cloud computing is oriented more 

towards the delivery of scalable web services than ad-

vanced network services, it is built on much of the same 

technology base as the network testbeds. The scale and low 

cost of these cloud-computing infrastructures makes them a 

promising venue for the development of new applications 

based on overlay methods, potentially leading to more 

rapid innovation in advanced network services and applica-

tions. Services, such as Amazon’s EC2 give developers a 

high degree of control over their “in-cloud” computing 

infrastructure, enabling developers to engineer systems that 

deliver complex services effectively, while allowing them 

to match the deployed resources to user demand on an 

hour-by-hour basis.  
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This paper is part of a larger research agenda centering 

on the use of shared infrastructures such as those provided 

by overlay hosting and cloud computing services. We are 

particularly concerned with applications for which a high 

quality user-experience depends on non-stop delivery of 

potentially complex, multimedia data streams. Such appli-

cations must be engineered to deliver consistent perform-

ance using a combination of dynamic provisioning 

mechanisms that respond to changing traffic loads and 

session-level resource-allocation mechanisms. Here, we 

explore the application of performance-engineered overlays 

to support high quality interaction in virtual worlds. We 

focus on overlays for highly interactive games, such as the 

first-person shooter genre, as these provide a readily acces-

sible application testbed that exhibits very demanding per-

formance requirements. However, we are also interested in 

the use of virtual worlds to support real-world collabora-

tion, and this has led us to structure the underlying network 

services in a more general way, than we might, if we were 

concerned only with first-person shooters. 

The rest of this paper is structured as follows. In Sec-

tion 2, we describe the characteristics of virtual world ap-

plications as well as that of the overlay environment needed 

to support these applications. Section 3 describes the Forest 

overlay network architecture, and the services it provides. 

In Section 4, we describe a prototype implementation of the 

system with a distributed first-person shooter game that we 

adapted to use Forest. We evaluate the performance of the 

prototype in section 5 and evaluate the inherent scalability 

of the network architecture. Section 6 contains a discussion 

of related research and we close with a few remarks about 

the implications of our work and some future directions in 

Section 7. 

2. DESIGN CONSIDERATIONS 

2.1. Application Characteristics 

We are primarily concerned with the network level services 

needed to support interactive virtual environments. How-

ever, we need some understanding of the application in 

order to make informed choices for the network services. 

Virtual worlds are used in a variety of applications, 

from fast-paced first-person shooter games to role-playing 

games and socially-oriented worlds such as Second Life 

[RO03]. One important distinction among the different 

types of virtual worlds is the degree of interactivity and the 

degree to which consistent performance is essential to user 

satisfaction. The first-person shooters (FPS) are arguably 

the most demanding in this respect. Even small delays in 

the reactions of avatars to user input can make games diffi-

cult to play, causing users to lose interest. [CL06] quanti-

fied these delay requirements and found that the threshold 

latency for FPS games was about 100 ms, while it was 

about 500 ms for role-playing games and as much as 1000 

ms for real-time strategy games. While some of these other 

classes of virtual worlds are relatively forgiving, more 

consistent performance could also significantly improve 

their users’ satisfaction. As audio starts playing a larger 

role in such virtual worlds, consistent performance can be 

expected to become even more important. 

First-person shooter games are typically implemented 

using a single server to support client machines for a few 

tens of users. Client machines accept user input, render the 

graphics for the virtual world and interact with the servers. 

The single-server approach is even used for online games 

with large user populations. These systems typically divide 

users among distinct copies of the virtual world with a 

single server supporting the users in each copy.  

In systems where multiple servers cooperate to imple-

ment a single virtual world, the servers must interact with 

each other to share state information. While the use of 

multiple servers enables single sessions to have large num-

bers of users, it does bring with it significant scaling chal-

lenges. One of the primary issues facing the designer of a 

virtual world that uses multiple servers is how to divide the 

workload among the servers and keep the load on different 

servers balanced. The most commonly used approach is to 

divide the virtual world into regions and assign each region 

to a server [DE06, RO03]. Each server is responsible for 

maintaining the state of the users within its region. Since 

users mostly interact with other users in the same region, 

this approach reduces the amount of communication re-

quired among servers. On the other hand, as users move 

from region to region in the virtual world, the responsibility 

for maintaining their state must also move, and since users 

are free to move anywhere in the virtual world, servers can 

easily become overloaded if too many users crowd into the 

same region. 

Another way to distribute the load is to make a fixed 

assignment of users to servers [BH06]. This approach is 

well-suited to first-person shooters, as it gives the system 

more control over the per-server load, and if the servers are 

distributed geographically, it allows users to be assigned to 

servers that are physically close to them. Since users’ per-

ception of system performance is determined primarily by 

the responsiveness of their own avatars to their input, the 

assignment of users to nearby servers can significantly 

improve performance from a user perspective. At the same 

time, it does increase the amount of interaction required 

among servers, as users on different servers may be close to 

one another in the virtual world, requiring their servers to 

exchange state updates to enable their interaction. 

An important consideration in many virtual world ap-

plications is the provisioning of environmentally accurate 

audio. Today, this is of primary importance for virtual 

worlds oriented towards social interaction, but it can be 

expected to play a larger role in other types of virtual 

worlds in the future. High quality audio can enable much 

more natural interaction among users and can significantly 
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enhance their experience. However, delivering high quality 

audio presents additional challenges, as users must be able 

to receive unique audio mixes based on the audio produced 

by users (or other sources) in their immediate vicinity with-

in the virtual world. 

An overlay network supporting virtual worlds should 

support multiple approaches to managing system state, in 

order to avoid constraining the higher level application 

design, and to enable different kinds of virtual worlds to 

share a common set of network services. At the same time, 

it’s useful to focus on specific usage scenarios, to enable 

informed choices among design alternatives. Since the 

assignment of users to servers based on physical proximity 

places the greatest demands on the overlay network serv-

ices, we focus our attention on that approach. At the same 

time, we have taken care to avoid making the network 

services directly tied to any one approach. 

In general, regardless of the higher level application 

design, each virtual world will be implemented by a set of 

core components: clients, servers, and overlay routers. 

Clients are individual user machines responsible for accept-

ing user input and rendering the virtual world on the user’s 

display. Each client interacts with one of a number of serv-

ers. The servers’ job is to interact with their assigned cli-

ents, maintain their clients’ state information and to share 

that information with other servers. Servers may also pro-

vide clients with information about the virtual world, al-

though in cases where the virtual world is static, that 

information may be pre-loaded on the clients. Overlay 

routers provide network services in support of the clients 

and servers and these services are our primary focus. 

2.2. Overlay Network Services 

Since we are interested in supporting virtual worlds that are 

highly interactive and require consistent performance, it 

makes sense for the overlay network to support resource 

provisioning, so that each session has the network re-

sources needed to ensure that its users have a satisfying 

experience. This means that each session must have an 

assigned amount of network bandwidth and processing 

resources on the overlay routers. Its real-time access to 

these provisioned resources must be guaranteed using traf-

fic isolation mechanisms, such as weighted fair-queueing 

with per session queues, or something similar. Session 

resources are assigned based on the number of users, so in 

the absence of sufficient system resources, new users at-

tempting to join a session in progress can be denied access 

if necessary, to ensure a high quality user experience for 

those users in the session. 

Since the delivery of state update information is a ma-

jor part of the overlay network’s role, it’s important to 

make the delivery of state updates as efficient as possible. 

Since many servers may require updates for a particular 

user, the overlay network should provide an efficient multi-

cast mechanism for distributing updates among interested 

servers. Since servers’ needs for specific information can 

change frequently, as users move around the virtual world, 

it is also important to support efficient subscription to mul-

ticast groups and to enable servers to subscribe to many 

different groups at the same time. The precise way that 

servers use multicast groups may vary among specific high 

level application designs, but the provision of a flexible, 

rapidly configurable multicast service can be broadly use-

ful. 

It’s worth noting that overlay-based multicast, while 

useful, is not essential. Distributed game systems can be, 

and have been built, using only unicast packet delivery, so 

it’s worth considering the question of whether multicast 

provides sufficient benefit to justify its inclusion as a core 

overlay network service. Multicast is useful primarily in 

two ways. First, it reduces the number of packets that a 

server must send.  If a typical user is in view of an average 

of k other users, then a session involving n users will re-

quire the delivery of kn state updates during each update 

interval. Since k is typically fairly small (4-8), the advan-

tage provided by multicast is limited, and since each server 

must receive an average of k updates per user in any case, 

the reduction in packet processing load at a server is at 

most a factor of two. However, in some virtual world envi-

ronments, there can be individual users whose state updates 

are required by an unusually large number of others. This 

can make the peak load on a server substantially larger than 

the average, and in order to deliver consistent performance, 

sessions must be provisioned based on the expected peak 

load. This can significantly reduce the number of clients 

that a server can support, raising overall system costs. In-

deed, some peer-to-peer game systems implement a form of 

application-layer multicast in order to cope with this peak 

loading effect [BH08]. Of course this also raises the ques-

tion of users that must receive updates from an unusually 

large number of other users. Reference [BH08] also shows 

how to handle such situations by taking advantage of users’ 

inability to focus on more than a few other users at a time. 

Their system delivers full-rate state updates for only the 

few “most important” users, while providing reduced up-

date rates for those that are less important. They show that 

this technique effectively restrains the peak load on servers 

with only a limited impact on user-perceived performance. 

The second way in which multicast is useful is that it 

reduces network bandwidth. There are two aspects to this, 

the average bandwidth used and the bandwidth that must be 

provisioned to ensure consistent performance. We examine 

this in section 3.5, where we find that for representative 

configurations, multicast distribution of state updates can 

reduce the average cost by a factor of two or more and the 

cost of the required provisioned capacity by a factor of five 

or more. We note in the next section that network band-

width accounts for a significant fraction of the cost of these 

systems, so savings of this magnitude can be worthwhile. 
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2.3. Cost Factors 

When designing any system, it’s helpful to have an under-

standing of how different system resources contribute to the 

overall cost. This is particularly important when consider-

ing how design choices may affect the relative quantities of 

different types of resources that may be required. For over-

lay applications, there are three types of resources that are 

of primary concern: the servers, the overlay routers and the 

network bandwidth. In this section, we make some rough 

estimates of the costs of different components in order to 

get a sense of their relative contributions. We emphasize 

that these are rough estimates only, and the absolute values 

should not be taken too seriously. Our purpose in making 

these estimates is to develop an understanding of the rela-

tive magnitude of different cost factors, so we that can 

make more informed design trade-offs. 

We start by considering the servers. Experience with 

single server game systems tells us that in highly interac-

tive games, a single server can be expected to support a few 

tens of users. Let us assume that a commodity server can 

support 50 users and that the cost of acquiring and install-

ing the server is about $2,000 and that servers are replaced 

every 24 months. This leads to a monthly cost of $1.67 per 

user. As power is a significant cost factor in modern data 

centers, we also include it in our estimate of the monthly 

cost of maintaining a server. [KO07] studied the power 

consumption of servers in the United States in 2007 and 

found that the average volume server uses about 187 Watts 

and when the power consumed by auxiliary equipment and 

cooling is included this number roughly doubles. If we use 

a more conservative estimate of 400 Watts with an average 

price of industrial power at about 6.9 cents per kWh [EIA], 

then we arrive at an electricity cost of approximately 

$20.15 per month, or about 40 cents per user. Adding this 

to the hardware cost we get a monthly cost per user of 

$2.07.  

To evaluate the cost of the overlay routers, we assume 

that they are implemented using comparable commodity 

server hardware, but with an efficient kernel-resident net-

working software subsystem such as Click [KO00]. Previ-

ously reported results show that IP routers implemented 

with Click are capable of forwarding several hundred thou-

sand packets per second, even on single-core processors. 

Recent work has also shown that when these systems are 

re-engineered to take full advantage of modern multicore 

servers, packet-forwarding rates in the millions of packets 

per second can be achieved [EG08]. If overlay routers 

forward packets at a conservative rate of 200 thousand per 

second, and the system sends 20 packets per second for 

each user, and these packets pass through an average of 10 

overlay routers, then we need one router for every 1,000 

users. This results in a monthly cost contribution of about 

10 cents per user (including the cost of power). 

The difference in the cost contribution of these two 

components is striking. There are two factors at work here. 

First, the servers have a heavier computational load, since 

they must perform the physics simulation needed to deter-

mine the interactions among objects in the virtual world. In 

addition, they must exchange packets with clients and other 

servers. The second factor is significant in that their use of 

user-space processing in a general-purpose operating sys-

tem makes it more difficult for them to deliver consistent 

performance, which in turn means that their average utiliza-

tion cannot be very high. The overlay routers, on the other 

hand, need only forward packets and because they have a 

single function, can operate in the kernel and monopolize 

the processing resources. 

We note that routers can be implemented using Net-

work Processors (NP) systems, in place of conventional 

processors. While NPs are generally more expensive, they 

are engineered for packet processing, allowing them to 

achieve significantly higher performance than conventional 

processors. This can lead to improved overall cost-

performance. However, since it’s clear that the server cost 

plays a much larger role than the router cost in the virtual 

world application context, we don’t consider this alterna-

tive in detail.  

The third system resource that should be considered is 

network bandwidth, particularly wide-area network band-

width. It is more difficult to quantify this with precision, 

but we note that ISPs such as Cogent offer leased wide-area 

connections for approximately $10 per month per Mb/s 

[TELE]. If the system sends 20 packets per second per user, 

with an average packet length of 250 bytes, we consume an 

average of 40 Kb/s per user. If each user’s packets are sent 

over an equivalent of five wide area connections, each user 

consumes 200 Kb/s of wide area bandwidth, resulting in a 

monthly cost per user of $2. 

These cost estimates while crude, do make it clear that 

the largest contributors to the system cost are the servers 

and the network bandwidth. This underscores the value of 

multicast as a core overlay network service, since it reduces 

the usage of wide area network bandwidth. Making the use 

of multicast as efficient as possible is also clearly worth-

while, so long as we can do so without conflicting with the 

objective of providing consistent performance to users. 

The results also suggest that there may be opportuni-

ties for the overlay network to provide additional services 

that allow servers to support more users. This opportunity 

is inherently limited, since the servers’ major task of phys-

 

Figure 1: Rough cost estimates 
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ics calculations cannot be reduced. However, to the extent 

that communications overhead and processing of state 

updates limit servers’ ability to support users, there may be 

some potential to reduce server load. It’s also possible that 

overlay routers could provide services that reduce the peak 

load on servers, allowing them to operate at higher average 

utilization levels. 

3. FOREST ARCHITECTURE 

Based on the considerations discussed above, we have 

chosen to structure the overlay network around a core net-

work service that uses tree-structured communications 

channels to support all types of communication. We refer to 

these channels as comtrees. Comtrees are configured for 

individual virtual world sessions and provide the frame-

work for distributing state updates among servers, as well 

as for communication between servers and clients. Re-

sources are explicitly allocated to comtrees based on the 

number of users and session-specific resource require-

ments. Forest also provides isolation mechanisms to ensure 

that comtrees are always able to access the resources they 

have been assigned. Separate comtrees are used for distrib-

uting control information not associated with individual 

sessions, and are provisioned to ensure that the control 

traffic is never blocked by contention from other traffic 

sources. 

3.1. COMTREES 

Comtrees are the central primitive in Forest. While the 

overlay network’s links will typically form a general graph, 

a comtree uses a subset of the links that forms a tree. Each 

application session using Forest is assigned its own comtree 

and all communication for the session takes place within 

this tree-structured channel (of course, applications may 

use more than one comtree if appropriate). Comtrees sup-

port both unicast and multicast packet forwarding and op-

erate as independent logical networks. Unicast routing 

information is acquired dynamically as a by-product of 

packet forwarding, in a way that is similar to the learning 

mechanisms used by Ethernet LANs. In the absence of 

routing information needed to forward a packet, a Forest 

router can forward the packet to all of a comtree’s incident 

links (except of course, for the link on which the packet 

was received). Packets forwarded in this way are marked 

with a flag requesting routing information for the addressed 

destination, which triggers a response containing the re-

quired information. 

Since all multicast forwarding also occurs over the 
tree, comtrees follow the shared tree approach to multicast 

routing where all members of a multicast group use the 

same shared tree to route multicast traffic. The alternative 

approach is known as source-based trees, in which each 

sender to a multicast group constructs its own shortest path 

tree to all the other members of the multicast group. With 

respect to multicast, a comtree represents a single shared 

tree used for all multicast groups within the session. The 

advantage of this approach is that it is straightforward to 

support highly dynamic multicast groups as there is no 
need to select routes for different multicast groups or for 

different users in a group. Of course, the configuration of a 

comtree for a session does require the selection of a tree 

that can support the session, but the configuration (and re-

configuration) of the session’s comtree can occur on a 

much longer time-scale than the configuration of multicast 

groups within a session, which is driven by the movement 

of user avatars within the virtual world. 

Figure 2 shows an example comtree used to support a 

session. The heavy-weight links define a tree connecting all 

the overlay nodes involved in the session. Servers share 

state updates over the comtree using multicast, while cli-

ents communicate to their assigned servers via unicast, as 

indicated by the dashed connections. More precisely, pack-

ets from clients enter the overlay from the public Internet at 

an overlay access point. The access point extracts a Forest 

packet from the IP packet it is contained in, and checks the 

Forest header information. These checks include a verifica-

tion that the Forest source address is consistent with the 

source IP address and port number, and that the endpoint 

with that source address is allowed to send packets on the 

comtree specified in the packet header. The system can 

optionally restrict a given client, to a single unicast destina-

tion address. This is useful to ensure that clients interact 

only through their assigned servers. Client connect to the 

overlay at the nearest available overlay router, in order to 

minimize the reliance on public Internet connections. Serv-

ers may be located anywhere in the overlay infrastructure, 

although for highly interactive sessions, are preferably 

located close to their clients’ access points. 

Comtrees are also used for distributing information 

that is not associated with individual user sessions. For 

example, a link-state style routing protocol for distributing 

information about overlay network resources in Forest can 

be efficiently implemented on top of a comtree. Here mul-

ticast groups can be used to support aggregation of routing 

information, so that nodes can subscribe to detailed link-

state information for nearby overlay nodes, while receiving 

coarser-grained information for more distant parts of the 

 

Figure 2: Overlay Components 
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network. Multiple comtrees can be configured to balance 

traffic and provide protection against link and node fail-

ures. 

3.2. Naming and Addressing 

Users, sessions, and system components such as servers 

and overlay routers are identified in the system by globally 

unique, human-readable names. Comtrees are identified by 

a unique 32 bit numerical identifier that is included in the 

header of every packet sent on the comtree. Comtree ids are 

flat global identifiers and imply no semantic information. 

Endpoints may send packets using only comtree identifiers 

for which they have been configured, and Forest routers 

discard packets received from endpoints not configured to 

use them.  

Network endpoints and routers are each assigned a un-

icast address for use within the comtree. These addresses 

implement a two level hierarchy to improve the scalability 

of routing information. Specifically, each unicast address 

has a “site” part that identifies a geographic location or 

region and an “endpoint” part that identifies a particular 

component within the site. A Forest router uses the site part 

of the address to reach routers in other sites and uses the 

endpoint part to reach components within its own site. We 

require that all nodes in a comtree with the same site num-

ber form a subtree within the comtree topology. This allows 

Forest routers to limit the amount unicast routing informa-

tion they must maintain per comtree. Since addresses are 

local to a comtree, the number of unicast addresses needed 

to support a comtree used by a virtual world is determined 

primarily by the number of clients in that world. In this 

context, 32 bits provides an ample supply of addresses, 

while making a simple two level hierarchy sufficient for 

routing scalability. 

Multicast groups require their own addresses. In the 

next section, we discuss how multicast packets are routed 

in a scalable way. Here, we simply note that no location 

information is required for multicast groups, so multicast 

addresses are simply flat numerical identifiers. This leads 

to a simple 32 bit address structure in which the high bit is 

used to distinguish between unicast and multicast ad-

dresses. Unicast addresses divide the remaining 31 bits 

between the site part (15 bits) and the endpoint part (16 

bits). Multicast addresses use all 31 of the remaining bits to 

identify a comtree-wide multicast group. 

3.3. Scalable Multicast Routing 

Before discussing the specifics of multicast routing, it’s 

useful to consider a specific usage scenario. One way in 

which servers can use multicast sessions to manage the 

delivery of state updates is to associate a separate multicast 

group with each region of the virtual world. A server sends 

a state update for a given user with the multicast address of 

the region currently occupied by the user’s avatar. Servers 

can then subscribe to the multicast addresses for regions 

that are “visible” to their users. As users move, servers 

continuously update their subscriptions. Regions may have 

a fixed size or may vary in size to match the structure of the 

virtual world. The ratio of the number of regions to users 

can vary, depending on exactly how regions are defined 

and used, but we note that there is little value in having 

more regions than users and that there are reasonable de-

signs in which the number of regions is comparable to the 

number of users. We also note that subscriptions may 

change rapidly. A server hosting 50 client machines might 

maintain subscriptions for a few hundred regions, and may 

add and remove a few tens of subscriptions per second. An 

overlay router supporting 100 servers could be required to 

process thousands of subscription requests per second, 

making it essential that subscription processing be very 

lightweight. 

Since each session communicates over its own com-

tree, one way to implement multicast is simply to broadcast 

every multicast packet to every overlay router in the com-

tree and let the routers deliver packets to their directly 

attached endpoints based on local subscriptions (see left 

panel of Figure 3). This has the advantage that each router 

need only keep track of the subscriptions for its attached 

endpoints, minimizing the required multicast routing state, 

minimizing the subscription processing overhead and en-

suring rapid response to subscription requests. On the other 

hand, it does require that multicast packets be distributed to 

Forest routers whose servers have no interest in them, need-

lessly consuming network bandwidth in these cases. 

 

Figure 3: Scalable multicast routing in tree-structured channels. (a) global distribution, (b) distribution to/from single core 

router,  (c) distribution to/from a core subtree 
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An alternate approach is to define a central “core” 

router in the session tree and configure each router with a 

“pointer” telling it which of its incident links leads to the 

core (see center panel of Figure 3). With this approach, all 

multicast packets are sent to the core router, and subscrip-

tion requests are also forwarded towards the core router, 

while adding multicast routing state at each router along the 

path to the core. If a subscription request finds an overlay 

node along this path that is already subscribed to the given 

multicast, then the subscription is not propagated the rest of 

the way to the core. The use of a core router for routing in a 

shared multicast tree is not new and was first explored in 

Core-Based Trees [BA93], although there are some differ-

ences in the way that Forest uses the basic idea of a multi-

cast core. In section 3.5 we show that using a core in 

comtrees largely eliminates the excessive transmission of 

unwanted multicast packets, while still allowing efficient 

subscription processing. On the other hand, it can slow 

down the response to subscription requests and places a 

larger burden for handling multicast routing state on the 

core router. 

We have chosen a more general approach that can be 

used to implement either of the above options, as well as 

various intermediate points. In particular, we allow each 

comtree to define a “core subtree” consisting of a subset of 

its overlay routers (see right panel of Figure 3). Each router 

outside the core has a pointer telling it how to reach the 

core, and all multicast packets are sent towards the core and 

distributed to all the routers in the core. Note that this can 

be done without any multicast-specific routing state. Sub-

scriptions also flow towards the core, as described in the 

previous paragraph and need never propagate any further 

than the first core router. We note that a small core pro-

vides the most efficient use of bandwidth at the cost of 

higher subscription processing overhead and slower re-

sponse to subscription requests.  

There are a variety of ways one might select which 

routers to include in the core. Perhaps the simplest ap-

proach is based on a specified maximum “distance” be-

tween an endpoint and its nearest core node; the distance 

metric can be a function of both hop count and link delay. 

The core can then be made as small as possible, consistent 

with this constraint, providing a bound on the response time 

to subscription requests. Alternatively, the core can be 

adjusted dynamically, based on the subscription volume at 

a node. We leave the detailed examination of these issues 

to future work. 

3.4. Resource Allocation 

Resources are allocated to sessions, which grow and shrink 

dynamically as users come and go. Some sessions may 

involve a fairly small number of users and be of modest 

duration. Others can become very large and last for days, 

months or even years (e.g. Second Life). 

3.4.1. Allocating Server Resources 

Servers can typically support a few tens of users, al-

though the actual number will vary based on server capac-

ity and the specific application. Ideally, we would like to 

have each server support just one session, as this maxi-

mizes the opportunity for sharing state among the users on 

a server and reduces the performance penalties associated 

with time-sharing a single server among multiple sessions. 

At the same time, we would like to map users to servers 

that are physically close to them. These two preferences 

have the potential to conflict with each other, particularly 

as users join and leave sessions that are in progress. We 

don’t address the issue in detail here, but we note that the 

time-sharing penalties can be substantially reduced by 

implementing real-time scheduling mechanisms in the OS. 

So long as the total server load is limited, good perform-

ance can be achieved in virtual world applications if each 

virtual world process is guaranteed an opportunity to exe-

cute at least once every 20 ms. If the number of virtual 

world applications running on a single processor is small 

(say ten or less), this condition can be met, even using 

conventional operating systems. 

3.4.2. Capacity Provisioning of Comtrees 

The allocation of network bandwidth to sessions can be 

broken into two main parts. First, we have the traffic be-

tween clients and servers. This traffic is constrained to a 

specific (and typically short) path within the session’s com-

tree and is predictable and continuous. This makes it 

straightforward to allocate the appropriate bandwidth as 

users are added and removed.  

The provisioning of multicast bandwidth is somewhat 

more complicated and depends both on the number of users 

and the set of nodes that are assigned to the comtree’s mul-

ticast core. As a basis for this provisioning, we require that 

each endpoint u specify a sending limit, !(u), and a receiv-

ing limit, "(u). These limits will be specific to the virtual 

world application but we note that generally a server will 

have a sending limit proportional to the number of users it 

hosts. When determining its receiving limit, a server may 

need to assume an upper bound on the number of users it 

will receive state updates from concurrently. In fact, to 

avoid overloading servers, the application must be designed 

to limit the rate of arriving state updates to an amount that 

is consistent with its processing capacity. So, the receive 

limit arises naturally from the application’s need to ensure 

real-time perfomance. 

Given such limits, we can provision all the links in a 

comtree so that they have the capacity to support any traffic 

pattern that does not exceed the limits. It is up to the end-

points to ensure these limits are respected, which is reason-

able given that virtual world servers are resources in the 

network designed to cooperate with one another. The prob-

lem of provisioning tree-structured communication chan-

nels with specified send/receive limits was studied in 
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another context by Fingerhut in [FI94, FI97]. He showed 

that one can provision the bandwidth on a link from router 

x to router y as follows. First, let X be the set of endpoints 

on x’s side of the link and let !(X) be the sum of the send 

limits for the endpoints in X. Similarly, let Y be the set of 

endpoints on y’s side of the link and let "(Y) be the sum of 

the receive limits for the endpoints in Y. The bandwidth 

required from x to y is then just the smaller of !(X) and 

"(Y). Moreover, one can compute the required link capaci-

ties for all links in the tree, using a single tree traversal 

requiring O(n) time, for a tree with n nodes. To account for 

the use of a multicast core that receives copies of all multi-

cast packets, we need to make a small modification to this 

procedure. Specifically, if there are any core routers on y’s 

side of the link, the required bandwidth is !(X). Otherwise, 

the required bandwidth is min{!(X), "(Y)}. If the links are 

provisioned in this way, then the comtree is guaranteed to 

have the capacity needed for any traffic pattern that does 

not exceed the specified send and receive limits. It is worth 

noting that the addition of a new user often affects only a 

subset of the links in the comtree. In particular, if the core 

consists of a single central node, the addition of a new user 

affects links leading from the server assigned to the user to 

the core and perhaps a few more beyond the core. 

3.5. Selecting a Comtree Topology 

As there are many ways that virtual worlds can be distrib-

uted, different applications using different approaches may 

produce vastly different communication patterns. There-

fore, configuring a comtree for a session requires selecting 

a subtree of the overlay network infrastructure that has 

enough capacity to support arbitrary communication pat-

terns among network endpoints. This is a special case of 

the constraint-based network design problem also studied 

in [FI94, FI97, DU99]. It has been shown that in general, 

this problem is NP-hard, using a reduction from the Steiner 

tree problem. However, when the solutions are constrained 

to be trees, we can find optimal or near-optimal solutions in 

the cases most relevant to comtree configuration [FI94]. In 

particular, if A is the sum of all the !() values and Z is the 

sum of all the "() values, then for A=Z, the optimal solution 

is a shortest path tree from some “central” vertex in the 

overlay network to all endpoints that are to be included in 

the comtree. Such a tree can be constructed by computing a 

shortest path tree for the entire overlay network and then 

pruning links not used to reach endpoints required for the 

comtree. By trying all possible center vertices, we can find 

the optimal solution in O(mn + n log n) time, where m is 

the number of links in the overlay network infrastructure, 

and n is the number of nodes. If A<Z, this shortest path tree 

is not optimal, but is guaranteed to have a cost no more 

than (1+Z/A)/2 times that of the least-cost tree. 

While the prior work provides a solid basis for comtree 

configuration, it leaves several issues to be addressed. First, 

while reference [FI94] shows that shortest path trees are 

within a constant factor of optimal when A<Z, it provides 

no information about how to obtain better trees in this case. 

This is the case we would expect to find in most distributed 

virtual environments, as servers that share state using mul-

ticast will typically send far less than they receive. We find 

that in cases where A is much smaller than Z, other trees 

can substantially out-perform shortest path trees. We illus-

trate this with results from a simple experiment, shown in 

Figure 4. For this experiment, we generated random trees 

over n (=25) points distributed uniformly over a 2x2 square 

centered at the origin. Trees were constructed, starting from 

the most central vertex (that is, the one closest to the origin) 

and provisioned to determine the cost. For each point we 

assumed that there were n users transmitting state updates 

to users at fanout other (randomly selected) points, where 

the fanout was varied from 1 to 24 and each user had a send 

limit of 1. The cost of each provisioned link was taken to 

be its provisioned capacity times its length. Each data point 

in the figure shows normalized average results from 50 

independently generated random trees. We do not show 

error bars, but standard deviations were computed and were 

typically less than 10% of the mean values. Results for 

three different trees are shown: shortest path trees, mini-

mum spanning trees and an intermediate tree constructed 

using a variant of Prim’s minimum spanning tree algo-

rithm, with a bound on the maximum allowed “stretch” 

with respect to distances from the tree root; we show the 

results when the stretch is limited to 1.2 (note that con-

straining stretch to 1, yields shortest path trees, while al-

lowing it to be unbounded, yields minimum spanning 

trees). The shortest path tree cost grows linearly with the 

fanout, and is very close to the analytical bound. The 

minimum spanning tree provides the best results for large 

fanout, and the bounded stretch trees perform nearly as 

well. We conjecture that a hybrid strategy, which mimics 

the minimum spanning tree algorithm in the early stages, 

and the shortest path tree algorithm in later stages, will out-

perform the “pure” strategies considered here.  

The earlier work also does not address the use of a core 
subtree for multicast packets. Core subtrees are useful, 

 

Figure 4: Alternate comtree topologies 
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because they can significantly reduce the amount of routing 

state needed to “locate” a multicast group. This can be 

particularly important for applications that use many small, 

dynamic, multicast groups, such  as distributed virtual 
environments. On the other hand, the use of a core does 

impose a network bandwidth cost. We have examined how 

this cost changes with the size of the core, and compared 

this to the cost of implementing multicast without a core. 

We again generated random trees over n points distributed 

uniformly over a 2x2 square centered at the origin. Trees 

were constructed using the variant of Prim’s algorithm 

mentioned earlier; for each case, several values of stretch 

were evaluated and the one that produced the least expen-

sive tree for the given provisioning method was selected. 

The results appear in figure 5. First, we note that when the 
core consists of just the “center” node of the comtree, the 

cost is essentially indistinguishable from the case where no 

core is used. When the neighbors of the center node are 

added to the core, there is some increase, but the difference 

becomes negligible for larger fanouts. Larger cores lead to 

higher cost, but the cost difference shrinks rapidly as the 

ratio of receive limits to send limits grows. The curve la-

beled “unicast routes” shows the cost of routing traffic 

from senders to receivers using direct paths (that is, the cost 

was taken to be the Euclidean distance between sender and 

receiver). This is actually slightly more efficient than mul-

ticast when the fanout is 2, but is significantly less efficient 
for larger fanouts. 

The prior work must also be extended to account for 

capacity limits in the underlying substrate. One way to 

incorporate capacity limits is to modify the tree construc-

tion algorithm to check capacity constraints as each new 

link is added to the tree; if adding a link causes a constraint 

to be exceeded (either for the given link or other links al-

ready in the tree), the link is marked as excluded and the 

algorithm proceeds to consider alternate choices. In the 

absence of capacity constraints, this produces trees that are 

provably optimal or close to optimal. In the presence of 

capacity constraints, there is no guarantee that this method 

will produce a solution at all, even when a solution is 

known to exist. However, it is a natural starting point for 

algorithmic study of the capacity-constrained case, which 

we plan to investigate further in future work. 

Our strategy for provisioning comtree bandwidth can be 

overly conservative in systems where there is a strong 

locality to the communication patterns. This can cause it to 

allocate more bandwidth than the application requires, 

needlessly increasing cost. The constraint-based network 

design framework is general enough to accommodate situa-

tions like this. For each endpoint, u, we define a neighbor-

hood Nu and specify a constraint !(u,Nu) on the amount of 

traffic that can go from u to nodes outside Nu. Constraints 

of the form "(u,Nu) are defined similarly. With these added 

constraints, the objective for comtree selection is to find a 

subtree of the overlay network infrastructure that can sup-

port any traffic pattern that satisfies both the original 

send/receive constraints and these additional constraints. 

We expect that these neighborhood constraints will often 

be associated with clusters of nodes that are geographically 

close to one another, leading to a natural hierarchy that 

matches well with tree topologies. In future work, we will 

study how comtree selection algorithms can be designed to 

produce high quality solutions for cases like this. 

Given that virtual world applications are highly sensi-

tive to network delay, it is worthwhile considering the cost, 

in terms of delay, of routing traffic through the comtree.  

While the use of a shared multicast tree allows servers to 

join and leave many multicast groups very efficiently, 

source-based multicast routing would have the minimal 

possible delay between nodes since each node routes traffic 

over its own shortest-path tree. However, since comtrees 

are provisioned and isolated from one another, the primary 

source of network delay is expected to be propagation 

delay. Thus the difference in delay costs is roughly propor-

tional to the difference in path lengths. The comtree selec-

tion algorithm described in this section attempts to 

constrain path lengths by including a stretch factor that 

bounds the distance from any node to the root of the tree.  

To verify that this approach gives an acceptable level of 

delay, we use the same experiment where we constructed 

comtrees in a 2x2 grid with 25 nodes. We produced a dif-

ferent set of comtree configurations for each value of 

 

Figure 6: Delay cost in comtrees Figure 5: Alternate comtree topologies 
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stretch and for each of the comtrees we recorded the path 

lengths between all pairs of nodes. We also took the cost of 

using shortest path trees as the Euclidian distance between 

the nodes. Figure 6 shows that the average delay cost of 

routing through the comtree in our 2x2 grid is about 1.5 

(regardless of stretch) whereas the shortest path between 

the nodes is approximately 1.04. The maximum distance 

between any pair of nodes is , and the maximum delay 

in the comtree is fairly close to this when the stretch factor 

is small. As noted earlier a stretch factor of 1.2 produces 

low provisioning costs, suggesting that one can limit the 

maximum delay, while still keeping the provisioning cost 

low. We note that while routing traffic within the comtree 

may cause some nodes that are physically close to each 

other to experience longer delays than they might other-

wise, the maximum delay is really the critical considera-

tion. We note that [VI08] provide a variety of strategies for 

selecting shared multicast trees that minimize delay.  

Since users may join and leave a virtual world session 

over time, this implies that comtrees may need to be dy-

namically reconfigured to accommodate changes in the set 

of endpoints. Most often, it will be possible to add an end-

point, through adjustments to the provisioned capacity of a 

subset of the comtree links. In other cases, comtrees may 

need to be restructured in order to accommodate new end-

points. In this case, the running application will need to 

migrate from one comtree to another while minimizing the 

impact on running applications. We plan to address this 

issue carefully in future work. 

4. APPLICATION TO AN FPS GAME 

To obtain a deeper understanding of virtual world applica-

tions and how they can be effectively supported using ad-

vanced overlay network services, we have adapted an 

existing distributed implementation of the popular first 

person shooter game, Quake. We have chosen to focus on 

FPS games for two reasons: (1) their fast-paced nature 

means that they have demanding performance characteris-

tics that push the boundaries further than less interactive 

virtual world applications, and (2) because there are avail-

able open-source software implementations that can be 

adapted to our purposes. In this section we describe some 

of the specific tradeoffs that have influenced our design, 

and provide details of a prototype implementation of the 

key overlay network services. 

4.1. Distributed FPS Design 

In Section 2.1 we described two approaches to distributing 

load among servers in a distributed system for virtual 

worlds. We have chosen to focus on the approach where 

players are statically assigned to servers that are physically 

nearby. This choice was made to help insure that servers 

respond rapidly and consistently to user input. Because this 

approach leads to higher server-to-server communication, it 

also represents the more challenging scenario from a net-

working perspective. We have adapted software developed 

for the Colyseus system [BH06] as our initial codebase, as 

Colyseus follows a similar approach to distributing server 

load, allowing us to use large parts of the Colyseus soft-

ware without modification. 

Before describing our modifications, we present a brief 

overview of Colyseus. In a typical FPS game, the terrain of 

the virtual world, or ‘map’, is generally static for the dura-

tion of the game session. Therefore the game state can be 

expressed as the state of all the mutable objects in the vir-

tual world, e.g. player avatars, missiles, health packs, etc. 

In the Colyseus architecture, each server hosts a subset of 

these objects, which are known as the server’s primary 

objects. The assignment of objects to servers does not have 

to be static, but the Colyseus designers note that object 

migration can be very disruptive, making a static allocation 

preferable. A Colsyeus server maintains the state and exe-

cutes the game logic for each of its primary objects. It is 

also responsible for communicating with the clients whose 

player avatars it hosts.  

Since objects hosted on different servers are part of the 

same virtual world, a Colyseus server keeps ‘replicas’ for 

the objects hosted on other servers that its primary objects 

may interact with. These replicas are weakly consistent 

copies of the primary. If a server needs to change the state 

of a replica, it must send a ‘remote update’ message to the 

server hosting the primary to request the change. The server 

hosting the primary keeps replicas loosely synchronized by 

sending out state updates whenever the state of the primary 

changes. Given the fast-paced nature of FPS games, objects 

tend to change state rapidly causing these state update 

messages to dominate the traffic among servers.  

One issue raised by this approach is the need for an 

“object discovery” mechanism, that is, a mechanism by 

which a server can determine which objects, hosted on 

other servers, it must keep replicas for. Generally the rules 

of FPS games dictate that objects can only interact with 

other objects that are in the same visible region of the game 

world. Additionally, only “dynamic” objects such as player 

avatars and missiles may interact with other objects. Ob-

jects such as health packs and ammunition are more static 

and their game logic generally does not depend on nearby 

objects. Therefore, Colyseus determines the “area-of-

interest” for its primaries by calculating the areas of the 

map that are visible to its dynamic objects. Servers learn of 

the objects they need regular updates for by periodically 

publishing the locations of their own objects and subscrib-

ing to their objects’ areas-of-interest. In Colyseus, this 

publish/subscribe system is implemented using a distrib-

uted hash table.   
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Because Colyseus was designed to work over the com-

modity Internet, it relies on the unicast packet delivery 

service that the Internet provides. Since we are operating 

within in an overlay environment, we can exploit multicast 

for more efficient distribution of state updates. Moreover, 

by associating distinct multicast addresses with regions of 

the virtual world, we can eliminate the need for Colyseus’ 

DHT-based object discovery mechanism. Servers simply 

subscribe to the multicasts for the regions of interest to 

their dynamic objects. It’s worth noting that multicasts 

need not be used in this way. For example, one could as-

sign a multicast address to each dynamic object in the vir-

tual world, allowing servers to subscribe to the multicasts 

for the objects of interest to them. However, one would 

need to augment this with an object discovery mechanism 

(possibly using multicast); associating multicasts to regions 

allows us to avoid this. 

Our approach raises a number of immediate issues, 

however, which results in several new tradeoffs. First, state 

updates do not contain the full state of an object, but rather 

are delta-encoded for bandwidth efficiency. This means a 

server will need to acquire the full state of the object before 

it can maintain a replica. Secondly, state updates are only 

sent when the state of an object changes and some more 

static objects, such as health packs, may not change state 

for long periods of time. Finally, Colyseus ensures replicas 

remain consistent by explicitly acknowledging every state 

update received. This last issue is problematical in a multi-

cast context, as it requires a scalable reliable multicast 

service, which is considerably more complex than a simple 

best-effort multicast. We have chosen to address these 

issues by transmitting the full state of each object periodi-

cally, allowing a server to instantiate a replica by simply 

waiting for the full update to arrive. Periodic full updates 

also enable recovery from lost updates. 

Since transmitting the full state of the object is rela-

tively expensive, the period between full state updates 

represents a tradeoff. Retransmitting the full state more 

frequently consumes more bandwidth but allows servers to 

acquire replicas or recover from lost packets more quickly. 

We have chosen to send full state updates for each object 

once per second. In terms of object discovery latency, this 

ensures that servers will have to wait an average of 0.5 

seconds after subscribing to a multicast address before 

receiving a copy of the object. This is comparable to the 

latency seen by Colyseus using its object discovery mecha-

nism. Since the underlying network service supports band-

width reservation, congestion-induced packet loss can be 

made very rare, minimizing the impact of delayed recovery 

from packet loss. 

Another design issue raised is how the game world 

should be partitioned into regions. Ideally the map’s terrain 

would be used to define a partitioning that minimizes visi-

ble boundaries among regions. This would reduce the num-

ber of regions needed to express an object’s area of interest, 

thus reducing the overhead caused by multicast subscrip-

tions. In this paper we have taken the much simpler ap-

proach of defining regions using a 2D rectangular grid. 

While this is less than ideal, it is worth evaluating since if 

such a simple approach proves satisfactory then there is not 

much point in pursuing more sophisticated methods. With 

this approach, the granularity of the grid, i.e. the number of 

regions used, represents a second tradeoff in the application 

design. Finer-grained partitioning means that servers can 

more accurately express the interest of their primary objects 

thus reducing the number of ‘uninteresting’ state updates 

received (due to objects that are not visible to a given ob-

ject, but whose regions are partially visible). On the other 

hand, subscribing to more regions increases the multicast 

control overhead and has the potential to make area-of-

interest calculation for objects more expensive. 

4.2. Experimental Prototype 

Our ultimate objective is to implement Forest within a high 

performance overlay hosting environment, such as the one 

being developed for NSF’s GENI initiative [GE06]. We are 

also exploring the possibility of deployment within com-

mercial cloud computing infrastructures [EC2]. As a first 

step, we are using Washington University’s Open Network 

Lab [ONL] as a prototyping environment. ONL has re-

cently been expanded to include network processor (NP) 

based routers with a flexible plugin subsystem for experi-

mental extensions. This makes it a natural testbed for GENI 

 

   

Figure 7: Data plane of the ONL router [Reproduced with permission from WI08] 
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applications, since it is likely that GENI will support over-

lays using similar NP-based components. 

The Open Network Lab is an Internet-accessible net-

work testbed that is built around extensible gigabit routers 

that can be “wired” to each other to form arbitrary network 

topologies. It also provides a large number of PCs that can 

be connected to the routers and can host applications that 

communicate over the configured experimental network. 

The routers can be modified through the insertion of user-

supplied plugins and we use this facility to prototype the 

core features of the comtree such as the multicast distribu-

tion of state updates and the associated dynamic subscrip-

tion mechanism.  

In this initial prototype, we have deferred the network 

control needed to create and reconfigure comtrees. This 

allows us to focus on the aspects of the system design that 

most directly affect the performance of the data path. In our 

experiments, we have also chosen to configure the multi-

cast core to include all overlay routers, in order to minimize 

subscription processing overheads. This allows us to sim-

plify the prototype implementation since subscriptions need 

not be propagated beyond the “first-hop” router.  

Before describing the implementation of our plugin we 

provide a brief overview of ONL’s NP-based routers 

(NPRs) but we refer the reader to [WI08] for a full discus-

sion. The NPRs are constructed using Radisys Network 

Processor blades that host a pair of Intel IXP 2800 NPs. 

Each NP subsystem contains three banks of SDRAM, four 

banks of QDR SRAM, and they share a Ternary Content 

Addressable Memory (TCAM). The blade also has ten 1-

gigabit data interfaces, which are divided between the two 

NPs, allowing them each to be used as a five port routers. 

The IXP 2800 has one xScale management processor 

and 16 multi-threaded Micro-Engines (ME), which do the 

bulk of the packet processing. The micro-engines support 

efficient pipeline operations, but can be used to support 

arbitrary software structures. The data path of the router is 

shown in figure 7. As packets come in, they are stored in 

DRAM and a packet reference, which includes the meta-

data needed for a route lookup, is passed through the pipe-

line for processing. The TCAM is used primarily for route 

lookups. The user can also install filters in the TCAM to 

direct packets to specific queues, outgoing ports, or to 

plugins. A filter can be used to match a specific protocol 

(TCP, UDP, or ICMP), a specific source or destination port 

associated with the protocol, or any prefix of the incoming 

packet’s source or destination IP address. The SRAM is 

used primarily for lookup tables, linked list queues, and as 

‘scratch’ memory for user plugins.  

In this ONL routers, five MEs have been set-aside as 

‘plugin’ micro-engines that run user code. Each plugin ME 

can be loaded with code separately so that a user can have 

up to five different plugins. In addition, there are five ring 

buffers, implemented in SRAM, that feed packets into the 

plugins. As mentioned above, filters can be installed to 

direct traffic to the plugins by delivering packets to any one 

of the ring buffers. Once the plugin is done processing a 

packet, it may direct the packet to a specific output queue 

or it may defer the routing decision to the router and let the 

router match the packet to the TCAM a second time.  

With this background, we briefly describe the imple-

mentation of our Forest plugin. The plugin implements the 

essential data path functions of a Forest router, including 

the forwarding of unicast and multicast packets, and the 

processing of multicast subscription packets. Multiple 

copies of the plugin can be installed to work in tandem, 

reading packets from the same ring buffer. The current 

prototype uses a relatively simplistic approach to managing 

multicast subscription state. Specifically, it uses the mem-

ory available for multicast state as a two-dimensional ma-

trix indexed by the comtree id and the multicast destination 

address. Each entry in this matrix is a bit vector specifying 

the outputs that matching packets should be forwarded to. 

The range of comtree ids and multicast destination ad-

dresses is constrained to allow the entire matrix to fit in the 

available memory space. A more general approach would 

be to use a hash table, but we have taken the simpler ap-

proach in this initial evaluation. 

While the NPR provides efficient support for IP multi-

cast, we do not use these mechanisms, as we are prototyp-

ing an overlay environment in which multicast is provided 

as an overlay service. Since the plugin must direct each 

copy of a multicast packet to distinct destination addresses, 

it must copy the payloads explicitly, rather than simply 

copying a packet reference. As a result, our plugin repli-

cates the packet payload, assigns each copy the appropriate 

destination address, and has the copies reclassified by the 

router to direct them to the correct output queue. This 

means that the “Parse, Lookup, and Copy” (PLC) block, 

which performs the classification step, must process each 

outgoing copy of each state update packet, in addition to 

the arriving packet. 

5. EVALUATION 

In this section, we evaluate the performance of the proto-

type Forest implementation and an FPS game application 

that uses its services to support large game sessions. 

5.1. Router Microbenchmarks 

We start by considering the raw packet processing per-

formance of the Forest routers. As discussed above, the 

ONL implementation of the Forest router uses up to five 

micro-engines to implement the processing required for 

forwarding state update packets and for subscription proc-

essing. We start with results for a single micro-engine for-

warding state updates. We considered two cases. In the first 

case we measured throughput for multicast traffic with a 

fanout of 1. Here traffic from five input ports is merged and 

forwarded out a single port. In this case the router is able to 



 - 13 - 

forward packets at a maximum rate of 1.95 million per 

second for a packet payload size of 150 bytes. Our Forest 

protocol header adds another 32 bytes and the UDP-IP and 

Ethernet headers add roughly another 66 bytes. The result-

ing output data rate is about 3.9 Gb/s or 77% of the output 

link capacity. As the payload size increases, the packet 

processing rate drops, while the data rate increases, with 

the output links saturating for payload lengths above 250 

bytes. For the second case we adjusted the fanout to 4 (the 

maximum for our 5 port router) by having the traffic re-

ceived at each port be forwarded out all four of the other 

ports. We found that the output rate in this case was essen-

tially the same as for the fanout 1 case, suggesting that the 

extra work required to copy multicast packets is balanced 

by the reduced input rate required to produce a given output 

rate. We also note that one of the factors limiting the rou-

ter’s performance is the requirement that the outgoing mul-

ticast packets have to be reclassified because of the change 

in destination IP address. For this reason, when we go from 

using a single micro-engine to using all five, the maximum 

packet-processing rate increases by less than 20%. This 

suggests that the router could likely accommodate the more 

complex packet processing that would be required in a 

realistic implementation that uses a hash table lookup in 

place of the simple direct lookup used here. 

We evaluated the router’s ability to process subscrip-

tion messages by subjecting it to a load that consisted en-

tirely of subscription packets, arriving on all input ports. 

We varied the number of subscription changes in each 

packet from 1 to 350 and found that the peak packet proc-

essing rate went from 3.15 million packets per second 

down to 70 thousand, while the resulting subscription proc-

essing rate went from 3.15 million up to 24.5 million. In the 

next section, we find that the subscription rate per user in 

actual game sessions is generally less than five per second, 

so a router can process the subscription requests for more 

than 50 thousand players, while using less than 10% of the 

its subscription processing capacity. However, it must be 

noted that this is for a simplified subscription processing 

mechanism, which neither propagates subscriptions, nor 

forwards acknowledgments to servers.  

5.2. Performance of FPS Game Sessions 

In this section, we study the performance of FPS game 

sessions that use Forest services to distribute state updates. 

We are interested in understanding how various application 

metrics are affected by the number of users in a session, the 

number of users per server and the number of regions used 

to partition the virtual world. 

We start by considering a configuration using a single 

router with four servers, and study how various metrics 

change as we increase the number of players per server 

from 1 to 25. For this experiment, we divided the game 

world into 36 uniform regions. The results are summarized 

in Figure 8. We show four performance metrics (1) the 

server CPU utilization (as reported by the operating sys-

tem), (2) the fanin per server (that is, the number of users 

for which a server receives state updates), (3) the number 

of regions of interest to a server (that is, the number of 

regions it is subscribed to) and (4) the subscription rate per 

server (the number of subscription changes per second). 

The values on the chart are averages over a five minute 

game session using simulated users (bots).  

Let’s focus first on fanin. We note that when there is 

just one user per server, users spend much of their time in 

isolated parts of the game world and have no interaction. 

This leads to a fanin less than one. As the number of users 

increases, the fanin grows for two reasons: first, because 

the fanin per user increases as there are more users to inter-

act with and second, because the number of users per server 

increases. Consequently, the fanin grows super-linearly, for 

small numbers of users. However, as the fanin starts to 

approach the total number of users in the session, the 

growth rate becomes linear and then sub-linear, with a 

maximum of about 65, when the total number of players in 

the session is 100. The regions of interest metric also grows 

with the number of players per server, growing more rap-

idly than the fanin for small numbers of users and then 

more slowly, as the number of subscribed regions starts 

approaching the total of 36. The subscription rate reaches 

its maximum value of about five changes per second when 

there are 10-12 users per server. Note that for this number 

 

Figure 8: Impact of Number of Users on FPS Performance 
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of users, the typical server is subscribed to more than half 

the regions of the game world, so changes to the set of 

subscribed regions stabilizes and starts to decline at this 

point. 

Finally, let’s consider CPU utilization. We note that for 

a single user per server, the CPU utilization is 5% and that 

the addition of three more users per server increases the 

CPU utilization to 11%, suggesting that there is an initial 

overhead of about 3% and then a cost of about 2% per 

player for doing the game physics calculations. As the 

number of players grows further, the processing of state 

update messages starts to have a significant impact, causing 

a more rapid increase. We observe that if the only thing the 

CPU had to do was perform the game physics calculations, 

it could handle 25 users with just 50% of the CPU capacity. 

For the larger sessions, the CPU utilization is about double 

what we would expect for the game physics alone, provid-

ing a measure of the cost of distributing the game over 

multiple servers. We also note that improvements in han-

dling of state updates can be expected to improve the server 

performance by no more than a factor of two. 

We also recorded maximum values for the various met-

rics. When the number users is small, the maximum fanin 

can be four times the average, but as the number of users 

grows, the ratio of the max to the average drops to less than 

1.2. The subscription rate is the most variable metric with a 

maximum that can be 4 to 7 times larger than the average. 

Figure 9 shows how the traffic volumes vary with the 

number of players per server. We show results for the mul-

ticast state updates (in MB) and for the subscription traffic 

(in KB). The numbers reported are the total traffic volume 

over all servers for a five minute game session. First, note 

that the state update traffic dominates by a factor of 100 or 

more. For the state update traffic, the sending volume in-

creases linearly with the number of servers, while the re-

ceived volume tapers off as the number of users gets large. 

The received traffic is typically twice as large as the sent 

traffic. The state update packets have a typical payload size 

of about 290 byte, while the subscription packets have a 

typical payload size of about 12 bytes.  

We now turn to a configuration with 100 users distrib-

uted across 20 servers linked by eight routers. In this case, 

we focus on how the various performance metrics change 

as the number of regions in the game is increased from 1 to 

144, as shown in figure 10. Starting again with fanin, we 

note that for a single region, each server receives state 

updates from all 95 users on the other servers, and as the 

number of regions grows, the fanin drops sharply before 

leveling off at about 40. The CPU utilization drops along 

with the fanin, leveling off at a utilization of about 30% 

when the number of regions is large. The regions of interest 

metric increases roughly linearly with the number of re-

gions and at 144 regions, we note that the average server is 

subscribed to roughly 25% of the regions of the game 

world. The subscription rate grows with the number of 

regions, topping out at about 20 subscription changes per 

second. We note again that the subscription rate is the most 

variable metric and for 144 regions, the maximum sub-

scription rate is about 90 per second. 

The computers used to implement the servers in these 

experiments are 2 GHz AMD Opterons running Linux 

version 2.6.21. Each is equipped with 512 MB of RAM and 

has a 1 Gb/s Ethernet interface. We used Quake’s built-in 

bots to simulate players using the default diffi-

culty/intelligence setting. We also used a fairly large cus-

tom map that consists largely of corridors and small rooms. 

We should note that while our overlay network could 

have accommodated substantially large game sessions, we 

found that limitations in the Quake 3 and Colyseus code 

base made it difficult to scale to sessions with much more 

than 100 users. While we made some efforts to address 

these limitations, we concluded that the required effort was 

not justified, given that our principal interest is in the scal-

ing characteristics of the overlay network services, rather 

than this particular FPS game.   

5.3. Scalability of Overlay Forwarding 

Next, we discuss how some of our basic mechanisms scale, 

as the number of users in a session grows. We start by 

noting that our choice of a comtree, which is a tree-

structured communication channel, leads to some intrinsic 

limitations, as the router at the root of the comtree must 

have the capacity to forward state update packets from all 

senders. If Forest routers are implemented using conven-

tional servers, we can expect packet forwarding rates of a 

few hundred thousand packets per second for servers with a 

single processor core and rates above one million for serv-

ers with eight or more cores. Given a state update fre-

quency of 20 packets per second, a root router should be 

able to forward the state update packets for between 10 and 

100 thousand users. Larger-scale sessions are possible, 

either using multiple comtrees for a single session or using 

multiple servers connected by high performance switches 

to implement high capacity routers serving a single session. 

We don’t explore these options in detail here, instead limit-
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ing ourselves to session sizes up to about 100 thousand 

users. 

The scalability of packet forwarding is limited by the 

required routing state, in addition to the forwarding capac-

ity of the routers. Unicast and multicast routes can be 

stored in a single hash table, where the hash is a function of 

the comtree id and destination address. The table can be 

stored in inexpensive DRAM, allowing millions of routes 

to be supported at a reasonable cost. The use of two level 

unicast addresses and tree-structured comtrees reduces the 

number of unicast routes that are needed for each comtree. 

Essentially, each router requires a route for each “foreign 

site” and for each endpoint in the “local site”. For large 

sessions, we expect the number of required unicast routes 

to grow as the square root of the number of endpoints, 

ensuring that the amount of unicast routing state remains 

manageable. Routes are obtained dynamically by learning 

addresses. Most unicast routes will be associated with cli-

ent/server traffic and routes will be established on the path 

joining a client to its server the first time they communicate 

with each other. Hence, the cost of acquiring the route is 

relatively small, compared to the normal communication 

that must take place between clients and servers. 

The amount of multicast routing state required by a ses-

sion depends on the size of the core. The worst-case is a 

single node core, since this requires the core node to main-

tain a multicast route for every multicast address. If we 

associate a separate multicast address with every user in the 

session (the option that uses the most multicast addresses), 

the number of multicast routes the core node must support 

is bounded by the number of users whose packets it for-

wards. Given that a router can economically support mil-

lions of routes, we expect the data forwarding requirements 

to limit the router long before the memory required for 

multicast routes becomes constraining. By a similar argu-

ment, the processing of subscription packets is unlikely to 

limit scalability, since the volume of subscription traffic is 

generally far smaller than the volume of data traffic. 

6. RELATED WORK 

This paper focuses primarily on overlay network services 

tailored to support distributed virtual environments. Our 

discussion, however, touches on a number of other aspects 

related to the support of distributed virtual environments. In 

particular, we have already described several methods for 

load balancing in a distributed virtual environment and in 

our game system we applied a region-based multicast tech-

nique to manage the interests of servers.  

The use of a region-based multicast scheme has been 

explored previously. Macedonia et al. [MA95] separates 

objects in DIS simulations into separated spatial, temporal, 

and categorical groups and associates these groups with IP 

multicast addresses. For their spatial partitioning, they used 

a similar region-based multicast approach except they used 

hexagonal regions and calculated the regions in the object’s 

area-of-interest by defining a simple fixed-size radius. 

Kantawala et. al. [KA96] described a similar region-based 

approach for DIS using a square grid of regions and ATM 

multipoint connections.  

A number of more sophisticated region-based interest 

management techniques have been investigated such as 

[AB98, FE02, HU04]. These approaches all offer more com-

plex methods for region partitioning that are intended to 

make interest management more precise and minimize the 

number of multicast addresses used. In our context, mini-

mizing the use of multicast addresses is a lesser concern, as 

we have per session address spaces and lightweight mecha-

nisms for joining and leaving multicast groups. 

Network services designed to support distributed virtual 

environments have been explored in the active networking 

context. The SANDS system [ZA02] uses active networks 

to support interest management in the network infrastruc-

ture. In their approach, which they call “active interest 

filtering”, the application uses a signaling protocol to install 

interest filters in the active routers that describes the con-

tent the application is interested in (e.g. regions in the game 

world). Packet payloads are then tagged with content de-

scriptors that the router uses to match against the subscrip-

tions of end hosts. Rajappan et al [RA03] augmented this 

work to provide reliable multicast for distributed simula-

tions that are loss-sensitive. ATOM [GR00] describes an 

approach to using active networking to provide a scalable 

totally ordered multicast service and they cite games and 

virtual environments as a motivation. Their network archi-

tecture is structured around using a sequencer node to pro-

vide a totally ordered multicast service. While ordered 

multicast may be a useful service to applications that re-

quire a high degree of consistency, we did not include this 

as a core network service in Forest. 

We also note that the use of multiple core routers in 

shared multicast trees has been proposed before but typi-

cally to address issues relating to routing in IP which is a 

slightly different context. For instance, Distributed Core 

Multicast [BL99], assumes a two-level network hierarchy 

where there is a backbone network that connects multiple 

area networks together. A “distributed core router” (DCR) 

is assigned for each multicast group within a given area. 

The DCR acts as the area’s local core for a multicast group 

and it communicate with DCRs in other areas to determine 

which areas have members in the multicast group. This 

approach reduces the amount of multicast routing state 

needed in backbone routers but it is also intended to avoid 

the triangular routing problem and for limiting traffic 

across expensive backbone links. While our approach using 

a simple core subtree also reduces routing state for the core 

routers, it does not involve signaling between the core 

routers as our goal is to provide fast and efficient subscrip-

tions to many groups by limiting the amount of subscrip-

tion processing in the tree. 
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The notion of overlay hosting services and networks 

that are engineered to provide a consistent level of per-

formance has only recently received significant attention, 

most notably in the context of NSF’s GENI initiative 

[AN05, GE06]. The VINI system [BA06] has extended 

PlanetLab, enabling users to reserve a specified fraction of 

nodes and network bandwidth in a distributed overlay envi-

ronment. The SPP platform described in [TU07] seeks to 

support higher performance provisioned overlays through a 

scalable system architecture that incorporates multiple 

servers and network processors. Amazon’s EC2 service 

[EC2] makes some of the capabilities developed in Planet-

Lab and these more recent systems available in a commer-

cial setting. 

7. CLOSING REMARKS 

We have presented the design of Forest, a performance-

engineered network architecture to support distributed 

virtual environments that require consistently high per-

formance. The network is based on tree-structured commu-

nication channels called comtrees that support both unicast 

and multicast packet delivery. The system is designed to 

support large-scale use of highly dynamic multicast groups 

for efficient distribution of state updates. To demonstrate 

the feasibility of the design and to assess its scalability we 

implemented a partial prototype of our system using NP-

based routers and evaluated the performance of a distrib-

uted first-person shooter game which we modified to use 

the provided overlay network services. Our results indicate 

that there is no reason why systems based on this architec-

ture could not support sessions with tens of thousands of 

users even in demanding virtual environments such as first-

person shooters.   

While our initial results are encouraging, we have de-

ferred much of the network control and we intend to evalu-

ate some of the control issues in future work. In particular, 

we need to develop a number of additional control proto-

cols such as the routing protocol used to distribute informa-

tion about the available capacity of links and overlay 

routers. A signaling protocol also needs to be defined to 

allow endpoints to create and modify comtrees as well as 

an access protocol to allow registered users to connect new 

endpoints to the Forest overlay.  

There is also a rich set of open problems related to the 

configuration and reconfiguration of comtrees. In section 

3.5 we briefly discussed how the provisioning mechanisms 

could be designed to accommodate capacity constraints, 

and how they could use knowledge of traffic locality to 

reduce the amount of bandwidth that must be provisioned. 

Perhaps most importantly, we need to address the issue of 

reconfiguring comtrees as endpoints are added or removed 

and as the demands of the virtual world session changes 

over time. We would also like to evaluate the benefits of 

centralized vs. distributed comtree configuration as well as 

investigate the use of comtrees to distribute control infor-

mation and provide fault tolerance.  

We are also considering several possible extensions to 

the core services that Forest provides. These might include 

end-to-end support for reliable multicast, to make it easier 

to implement applications with strong consistency require-

ments. Additionally we could offer high quality synchroni-

zation and synchronized packet delivery by having timing 

information piggy-backed on all packets exchanged be-

tween neighboring routers. This can be useful to ensure 

event ordering in distributed applications. Ideally we would 

also like to evaluate a more complete deployment of Forest 

in GENI and perhaps within Amazon’s EC2 computing 

cloud.  

Finally we note that the work presented here represents 

part of a broader research agenda investigating the potential 

of developing network architectures on shared infrastruc-

tures to support demanding applications. This work focuses 

on supporting virtual environments, but the use of comtrees 

provisioned to support individual users may have broader 

applications. In particular we envision the use of Forest to 

support audio and or video conferencing perhaps in con-

junction with virtual environments. 
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