
Department of Computer Science & Engineering

2009-68

The Virtual Network Scheduling Problem for Heterogeneous Network
Emulation Testbeds

Authors: Charlie Wiseman, Jonathan Turner

Corresponding Author: wiseman@wustl.edu

Abstract: Network testbeds such as Emulab and the Open Network Laboratory use virtualization to enable users
to define end user virtual networks within a shared substrate. This involves mapping users' virtual network
nodes onto distinct substrate components and mapping virtual network links onto substrate paths. The
mappings guarantee that different users' activities can not interfere with one another. The problem of mapping
virtual networks onto a shared substrate is a variant of the general graph embedding problem, long known to be
NP-hard. In this paper, we focus on a more general version of the problem that supports advance scheduling of
virtual network mappings. We experimentally study the performance of heuristic testbed schedulers in the
context of the Open Network Laboratory. Our algorithms incorporate Mixed Integer Programs to optimally solve
key subproblems, are fast enough to respond to reservation requests in under one second, and rarely reject
requests needlessly.

Type of Report: Other

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160

The Virtual Network Scheduling Problem for
Heterogeneous Network Emulation Testbeds

Charlie Wiseman, Jonathan Turner
Applied Research Laboratory

Washington University in St. Louis
{wiseman,jon.turner}@wustl.edu

Abstract—Network testbeds such as Emulab and the Open
Network Laboratory use virtualization to enable users to define
end user virtual networks within a shared substrate. This involves
mapping users’ virtual network nodes onto distinct substrate
components and mapping virtual network links onto substrate
paths. The mappings guarantee that different users’ activities
can not interfere with one another. The problem of mapping
virtual networks onto a shared substrate is a variant of the
general graph embedding problem, long known to be NP-hard.
In this paper, we focus on a more general version of the problem
that supports advance scheduling of virtual network mappings.
We experimentally study the performance of heuristic testbed
schedulers in the context of the Open Network Laboratory. Our
algorithms incorporate Mixed Integer Programs to optimally
solve key subproblems, are fast enough to respond to reserva-
tion requests in under one second, and rarely reject requests
needlessly.

I. INTRODUCTION

Network emulation testbeds provide a safe, controlled envi-
ronment for researchers and educators to conduct experiments
across a wide range of emulated network configurations. Most
emulation testbeds have two key characteristics that increase
their utility. First, they support multiple concurrent experi-
ments so that many users can use the testbed simultaneously.
Second, they guarantee that each active experiment is isolated
from all others, giving the appearance of a dedicated, non-
shared infrastructure to each experiment. This is accomplished
with a collection of switches and routers that indirectly connect
all of the resources in the testbed and an associated testbed
scheduler.

The scheduler takes a virtual network request and attempts
to find a mapping from the virtual network onto the avail-
able physical resources. If a mapping is found, the physical
resources in that mapping are allocated to the user and the
physical network is configured (with VLANs) to emulate the
virtual topology. The scheduler must ensure that each physical
node is mapped to only one virtual node across all virtual
networks (virtualized resource instances can be treated as
separate physical nodes). Moreover, there must be enough
capacity in the infrastructure switches and routers to support
every virtual link without causing interference with other
virtual links. Any mapping that meets these requirements could
be returned by the scheduler. There are two testbed design
choices that affect the associated testbed scheduler.

One of these design choices is how the resources are
allocated to users. That is, the resources are either given

on-demand or reserved in advance. In the former case, the
scheduler looks strictly at the physical resources that are not in
use by any other experiment, as in standard admission control.
This is how most emulation testbeds operate. The latter case
is somewhat more complicated. The scheduler must keep a
time line of reservations that determines what resources are
available at any given time. In addition to the virtual network
to be emulated, user requests include a period of time when
that virtual network should be active. When a new request
is made, all previously accepted reservations that overlap are
considered. Any reservations whose start time has not come
(i.e., are not yet active) could potentially be remapped to a
new set of physical resources. Clearly, maintaining a schedule
of network mappings is a generalization of pure on-demand
admission control.

The second testbed design choice is whether or not the
testbed nodes are typed. In most testbeds, homogeneous PCs
are the only user-allocatable resource, meaning that all phys-
ical nodes can be treated more or less equally. Other testbeds
support heterogeneous resources. This might include many
different PC configurations or other networking technologies
altogether, such as programmable routers and reconfigurable
hardware. In this case, every virtual and physical node is
assigned a type that reflects these diverse resource possibilities.
Naturally, finding mappings with typed nodes is a more general
problem than with non-typed nodes, which results in more
complicated schedulers.

Our work in this area is driven by the Open Network
Laboratory (ONL) [1][2] testbed, which is an emulation
testbed focused on providing users with heterogeneous, highly
configurable resources. As such, ONL schedulers must support
typed nodes. ONL also uses the reservation model, which
further complicates the design of ONL schedulers.

Scheduling virtual networks in testbeds is a variant of
the general network embedding problem, which is known to
be NP-hard. As such, our attention is focused on heuristic
schedulers. In particular, we present a new class of sched-
ulers for ONL that use Mixed Integer Programs (MIPs) to
optimally solve key subproblems by incorporating knowledge
of the physical network topology of the testbed. These new
schedulers are evaluated and results presented for response
times to new requests and for the probability of rejecting
requests. There are a large number of factors which affect the
performance, including the size and shape of the virtual and

physical topologies, reservation durations, and user flexibility.
Another major contribution of this work, then, is providing a
new way to characterize the work load for testbed schedulers
to assist in understanding the limitations and bottlenecks of
different approaches.

The rest of the paper is organized as follows. Section II
covers related work. Section III gives the formal problem state-
ment for building schedules of mappings between virtual and
physical networks in emulation testbeds. Section IV describes
the new schedulers for our testbed. Performance results for the
schedulers are presented in Section V. Section VI discusses the
results and their implications for future work. Finally, section
VII concludes the paper.

II. RELATED WORK

Emulab [3] is one of the most popular emulation testbeds.
It has been widely used for research and can often be found as
part of the experimental evaluation in papers at top networking
conferences. The testbed provides access to a large number of
heterogeneous PCs which are used to emulate many different
types of networks. The Emulab scheduler, assign, is based
on simulated annealing [4]. It has support for typed nodes in
order to take advantage of the different PC classes available in
the testbed, but does not support future resource reservations.
Emulab does, however, allow users to put their rejected exper-
iment requests into a scheduling queue that assign periodically
reevaluates. In this case, the scheduler is still only performing
admission control. Recent work [5] suggests that Emulab is
working on support for a more general resource reservation
model. The Emulab software has also been used in a number
of other testbeds, including DETER [6] and WAIL [7].

There is a related embedding problem in overlay testbeds,
such as PlanetLab [8]. PlanetLab nodes are PCs connected
directly to the Internet, and users choose specifically which
nodes they want to use as part of their experiment. Many users
select nodes in an ad-hoc manner, but there has been some
effort to allow users to make more informed decisions. Ser-
vices like SWORD [9] gather real-time data about resources
available on nodes (e.g., CPU and memory utilization) and
the network paths between pairs of nodes (e.g., path capacity
and latency). Given that information, users specify node and
path constraints for their desired experiment, and standard
constraint satisfaction techniques are used to find a mapping
[10]. Of course, there are no guarantees that resources remain
at the current utilization levels after they are chosen for an
experiment.

Similar ideas have also been extended for use in network
virtualization research. In this case, users specify full virtual
network topologies that are embedded into a well-known and
provisioned substrate network. Although the mapping problem
is generally the same as in emulation testbeds, the goals are
somewhat different. It is usually assumed that the virtual
network can be embedded in multiple ways, and schedulers
attempt to find the “best” solution. One approach is to use
constraint satisfaction, as above, to try to find a minimum
(monetary) cost embedding [11]. Other approaches include

standard optimization techniques which focus on balancing
load across nodes and along network paths [12] and some work
on redesigning the substrate to make the embedding problem
simpler [13]. These ideas also carry over to other areas such
as embedding routings in wireless sensor networks [14].

III. TESTBED SCHEDULING

At the core of building schedules of testbed resources is
finding mappings from user-defined virtual networks to a fixed
physical testbed network. Not surprisingly, it is easiest to
reason about network mappings using network graph structures
and algorithms. Indeed, many existing graph problems are
related to the testbed mapping problem, including multi-
commodity flow and subgraph isomorphism. Note that the
general testbed mapping problem is known to be NP-hard by
reducing to the multiway separator problem [15].

User virtual networks and the physical testbed network are
represented as undirected graphs. The physical testbed topol-
ogy will be referred to as the testbed graph and be denoted
T = (V T , ET). A virtual user topology will be referred to
as a user graph and be denoted U = (V U , EU). Edges have
capacities equal to network link capacities, denoted by cap(e)
for all e in ET or EU . Each vertex has an associated type
which corresponds to a particular kind of resource in the
testbed (e.g., a router or PC), denoted by type(v) for all v
in V T or V U .

The testbed graph has one special vertex type used to
represent the switches and routers that indirectly connect all
of the other nodes in the testbed. These infrastructure vertices
are hidden from users and are never directly part of any user
graph. Instead, they are used to form paths through T that
correspond to edges in U . An example is shown in Figure
1, where the dashed line in each graph shows one such
mapping from an edge in U to a path in T . A complete
mapping from U to T is represented by M = (MV ,ME).
MV = {(vU1 , vT1), (vU2 , v

T
2), . . .} is a set of vertex mappings,

where vUi ∈V U and vTi ∈V T . ME = {(eU1 , ρT1), (eU2 , ρ
T
2), . . .}

is the set of edge to path mappings described above, where
eUi ∈EU and ρTi = (eT1 , e

T
2 , . . . , e

T
k), eTi ∈ET , is a path in T .

Every mapping must be consistent with the associated user
graph and testbed graph. This means that every edge and
vertex in U is contained in the mapping, and that the endpoints
of each edge in U must be mapped to the endpoints of the
corresponding path in T :

∀(vU , wU)∈EU , (vU , vT), (wU , wT)∈MV ⇐⇒ (III.1)

((vU , wU), ρT)∈MEwhere ρT = ((vT , z1), . . . , (zm, wT))

Recall that users request a reservation for resources in
advance. This request is defined as R = (U,A, l), where U is
the user graph representing a virtual network, A = (t1, t2)
is the range of acceptable start times, and l is the length
of time they need to run their experiments. If a request is
accepted, it can not be moved in time or revoked. It is,
however, permitted to remap any future reservations (i.e., those
with begin times after the current time) on to a different set of

2

Fig. 1. a) Example user graph, and b) example testbed graph. Different shapes
represent different types, with rectangles representing infrastructure nodes.
The edge labels are the edge capacities. Node labels show an example mapping
from nodes in the user graph to nodes in the testbed graph. The dashed lines
show one mapping from an edge in the user graph to the corresponding path
in the testbed graph.

physical resources. As such, the scheduler keeps an ongoing
schedule of accepted requests. This schedule is represented by
the set S = {S1, S2, . . . , Sn}, where Si = (Ui,Mi, bi, fi) is
one accepted request with user graph Ui, mapping Mi from
Ui to T , request begin time bi, and request finish time fi.
Naturally, the begin time must fall within the user’s provided
start time range and the reservation must be the correct length:

t1 ≤ bi ≤ t2 (III.2)

bi < fi = bi + l (III.3)

The problem, then, is to find a mapping from a new
user graph to the testbed graph that is feasible given the
current schedule. The schedule needs two properties to remain
feasible. First, at any time, each vertex in T is mapped to at
most one vertex over all Ui in the schedule:

∀vT∈V T , (1) (vU , vT)/∈MV
i ,∀i, 1≤i≤n, vU∈V Ui or (III.4)

(2) (vU , vT)∈MV
i ,∃i, 1≤i≤n, vU∈V Ui and

(wU , vT)/∈MV
j ,∀i6=j, wU 6=vU∈V Uj

Second, at any time, the sum of all user graph edge capacities
that are mapped to each edge in the testbed graph must be
less than or equal to that edge’s capacity:

∀eT ∈ ET , cap(eT) ≥
∑
e∈XT

e

cap(e), where (III.5)

XT
e : {eU | (eU , ρT)∈ME

i , ∃i, 1≤i≤n, and eT∈ρT }

The formal problem statement follows. Given a testbed
graph T with typed vertices and edge capacities, a schedule
S = {S1, S2, . . . , Sn} of previously accepted reservations, and
a new reservation request R = (U,A, l), find a new feasible
schedule S′ = S ∪ {(U,M ′, b, f)} where M ′ is a consistent
mapping from U to T subject to conditions (III.1), (III.2),
(III.3), (III.4), and (III.5). If no such mapping exists, leave S
unchanged and reject R.

IV. HEURISTIC SCHEDULERS

Finding mappings from user graphs to the testbed graph
is already NP-hard, and our schedulers must add a time
component to the problem. Fortunately, testbed graphs in
emulation testbeds generally fall into one of only a few basic
designs. We use this knowledge to build heuristic schedulers
that incorporate the testbed graph structure into Mixed Integer
Programs that solve the mapping problem for a single user
graph.

The simplest testbed graph structure is a linear series of N
infrastructure nodes. Each user-allocatable node is connected
to exactly one of these infrastructure nodes, i.e., nodes with
multiple edges are connected to the same infrastructure node.
This is the structure used in ONL. The actual ONL testbed
graph is shown in Figure 2. This testbed graph will be used for
the evaluation in the next section. The edge capacities shown
are in Gb/s. Note that the labels next to nodes are used to
indicate how many of that type of node are connected to the
same infrastructure node. For example, the circle in the upper
left actually represents four nodes of the same type, each with
eight 1 Gb/s links to the left-most infrastructure node.

Although the problem formulation specifically allows ac-
cepted reservations to be remapped to a different set of testbed
nodes, the schedulers presented here do not do so. Instead,
they attempt to build schedules that maximize the probability
of accepting future requests. We consider two variations of the
same basic scheduler that differ in the heuristic used to achieve
this goal. The first, denoted MINBW, minimizes usage of
bandwidth between infrastructure nodes. The second, denoted
MAXPACK, extends the first by computing packing scores for
the user graph across all subsets of infrastructure nodes and
considering potential subsets in order of the packing score.
These two schedulers are clearly related, but the distinction
is made in order to better characterize different approaches
to the scheduling problem. Note that both of the following
descriptions are applicable only for a linear testbed graph, but
similar approaches could work for star and tree topologies.

A. Minimizing Bandwidth

The pseudocode for MINBW is shown in Algorithm 1. As
described in the previous section, the inputs are the user’s
virtual network graph U , the range of acceptable start times A,
the length of the requested experiment l, the testbed graph T ,
and the current schedule of accepted reservations S. The first
step is to compute the set of potential begin and finish times,
P , for this request. Resource availability only changes at exist-
ing reservation boundaries, so we need only consider candidate

3

Fig. 2. The ONL testbed graph. Different shapes represent different types, with rectangles representing infrastructure nodes. The edge labels are the edge
capacities. Labels next to nodes indicate how many of that type of node are present on the connected infrastructure node.

start times that correspond to the finish time of a existing
reservation. For example, if no reservations overlap with the
acceptable time range for U , then computePossibleT imes
will return only one possible time in P .

Next, MINBW attempts to find a mapping from U to
T for each time in P . Recall that these schedulers do
not attempt to remap any previous reservations. As such,
findOverlappingReservations is used to get the set of
reservations that intersect (b, f), and then all resources from
the overlapping reservations are removed from T to form T ′.
Here, subtraction means that all testbed nodes from reserva-
tions in O are removed from V T and all capacity used along
edges in O is subtracted from the edge capacities in ET .
enoughNodesAvailable is called next to check that there are
at least as many nodes of each type in T ′ as in U . If there
are not, then there is no reason to continue. In fact, even a
scheduler that attempts to remap other reservations can never
accept U at this point because there are not enough nodes of
each type left. This will be used in the evaluation section to
give bounds on the rejection rate of the scheduler.

If there are enough nodes of each type in T ′, then
findMapping is called to try to find a mapping from U to
T ′. If a valid mapping is found, then that mapping is added to
the schedule. Otherwise the next candidate time is tested, until
either a valid mapping is found or there are no more times to
try.

Algorithm 1 MINBW(U,A, l, T, S)
P ⇐ computePossibleTimes(A, l, S)
for all (b, f) ∈ P do
O ⇐ findOverlappingReservations(b, f, S)
T ′ ⇐ T −O
if enoughNodesAvailable(U, T ′) then
M ⇐ findMapping(U, T ′)
if validMapping(M) then
S ⇐ S ∪ (U,M, b, f)
return TRUE

end if
end if

end for
return FALSE

findMapping is the Mixed Integer Program that is the core
of our schedulers. The basic idea is to directly incorporate the
structure of the testbed graph into the MIP and then have the
MIP compute a mapping from the user graph to the testbed
graph directly. For all of our schedulers, findMapping uses
an objective function that minimizes the bandwidth used on
the edges between infrastructure nodes. The findMapping
pseudocode is shown in Mixed Integer Program 1.

There are a number of constants used in the MIP formu-
lation that are derived from U and T . N is the number of
infrastructure nodes in the testbed graph. N=5 for the ONL
topology. Recall that we are considering linear testbed graphs,
where the N infrastructure nodes are connected in a line by
N−1 edges. These edges are referred to as infrastructure edges.
eTi is the edge from infrastructure node i to infrastructure
node i+1. The infrastructure nodes are thus ordered so that
infrastructure nodes i and i+1 are adjacent in the linear
topology. L is the number of node types in U . For example,
in Figure 1a, there are three different node types, so L=3. The
MIP will have to ensure that the number of each type mapped
to individual infrastructure nodes does not exceed the number
available on that infrastructure node. αj , then, is the set of
nodes of type j in U , and βij is the number of nodes of type
j available on infrastructure node i.

There are only two sets of variables in the MIP. First, Ii(u)
is a binary variable that is used to indicate which infrastructure
node each u∈V U is mapped to. That is, Ii(u) = 1 if and
only if u is mapped to infrastructure node i, and Ii(u)=0
otherwise. Second, xi(e) is a positive, real-valued variable
representing the bandwidth used between infrastructure node i
and infrastructure node i+1 due to edge e ∈ EU . For example,
the highlighted edge to path mapping in Figure 1 would cause
x1(e= (A,D)) = 1, but x1(e= (A,B)) = 0. Note that even
though the xi(e) variables are allowed to be real-valued, the
MIP formulation will force every xi(e) to be either zero or the
edge capacity. Bandwidth used between infrastructure nodes is
then minimized by setting the objective function to minimize
the sum of all xi(e) values.

There are four sets of constraints which govern the MIP.
The first set ensures that the total bandwidth mapped to each
infrastructure edge is less than the available capacity on that

4

TABLE I
THE VALUES OF xi(e), e = (u, v), GIVEN THE MAPPING OF u AND v TO

INFRASTRUCTURE NODES.

xi(e=(u, v)) Ik(u)=1, ∃k≤i Ik(u)=1, ∃k>i

Ik(v)=1, ∃k<i+1 0 cap(e)

Ik(v)=1, ∃k≥i+1 −cap(e) 0

edge. The second set ensures that every node in U is mapped
to exactly one infrastructure node. The third set uses the αj
and βij constants to ensure that the number of each type of
user node mapped to each infrastructure node is less than the
number available on that node, as discussed above. All of
these constraints are reflecting the conditions described in the
previous section. The last set of constraints, on the other hand,
ties the MIP variables together.

Each constraint from this last set is used to set the value
of the associated xi(e) variable based on the mapping of
e=(u, v)’s endpoints to infrastructure nodes. For each value of
i, the constraint ensures that xi(e)=cap(e) if and only if e is
mapped to a path in the testbed graph that uses infrastructure
edge i, and xi(e) = 0 otherwise. The mapping of u and v
determines that path. Consider partitioning the testbed graph
along infrastructure edge i such that all infrastructure nodes
1,. . . ,i are on the “left” and infrastructure nodes i+1,. . . ,N are
on the “right”. Then xi(e)=cap(e) if u and v are mapped to
different sides of this partition. Recall that Ik(u)=1 indicates
that user node u is mapped to infrastructure node k. So,∑i
k=1 Ik(u) is 1 when u is on the left of infrastructure edge i

and 0 when it is on the right. The same is true for v. There are
thus four cases for the values of Ik(u) and Ik(v) that determine
the value assigned to xi(e), as shown in Table I. If both
endpoints are mapped to the same side of the partition, then
the total of both sums in the constraint is 1, leading to xi(e)=0.
Otherwise, the end points are mapped to different sides of the
partition, leading to either xi(e)=cap(e) or xi(e)=−cap(e).
Although it is not shown in the formulation for clarity, we
use the standard MIP technique of creating two variables
x+
i (e) and x−i (e) that are used in place of xi(e), where
x+
i (e)−x−i (e) = xi(e) and x+

i (e)+x−i (e) = |xi(e)|. Note that
this formulation assumes that the infrastructure nodes are each
internally non-blocking. If that is not the case, then additional
constraints could be added to ensure the forwarding capacity
of infrastructure nodes is not exceeded.

If findMapping finds a solution to the MIP, then the values
of Ii(u) contain a valid mapping from U to T , which is
then returned to MINBW. By minimizing the bandwidth across
infrastructure nodes, findMapping is attempting to conserve
as much of a scarce resource as possible for future requests.
If, however, the infrastructure edge capacities are high, then
it is possible that there could be more contention over node
usage.

Mixed Integer Program 1 findMapping(U, T)
Let N be the number of infrastructure nodes in T
Let eTi , 1≤i≤N−1, be the edge connecting infrastructure

nodes i and i+ 1
Let L be the number of distinct node types in U
Let αj , 1≤j≤L, be the set of nodes of type j in U
Let βij , 1≤j≤L, 1≤i≤N, be the number of nodes of type

j on infrastructure node i

Variables: ∀u∈V Uand ∀i, 1≤i≤N, Ii(u)∈{0, 1}
∀e∈EUand ∀i, 1≤i≤N−1, xi(e)≥0

Objective: min
∑
e∈EU

N−1∑
i=1

xi(e)

s.t. ∀i, 1≤i≤N−1,
∑
e∈EU

xi(e) ≤ cap(eTi)

∀u∈V U ,
N∑
i=1

Ii(u) = 1

∀j, 1≤j≤L, and ∀i, 1≤i≤N,
∑
u∈αj

Ii(u) ≤ βij

∀e=(u, v)∈EU , and ∀i, 1≤i≤N−1,

xi(e)+cap(e)

(
i∑

k=1

Ik(u) +
N∑

k=i+1

Ik(v)

)
= cap(e)

B. Maximizing Packing

The second scheduler, MAXPACK, is derived from MINBW
and shares the same basic structure. MAXPACK uses a mod-
ified heuristic based on node packing to try to increase
the probability that future requests can be accepted. As in
MINBW, MAXPACK does not attempt to remap any existing
reservations.

The pseudocode for MAXPACK is given in Algorithm
2. Everything is the same as in MINBW until after
enoughNodesAvailable is called. If there are enough nodes
of each type available in T ′, then findV alidSubsets com-
putes the set Q that contains all subsets of T ′ that have
at least as many nodes of each type as are in U . Here, a
subset of T ′ is any contiguous set of infrastructure nodes and
all of their connected non-infrastructure nodes. If there are
N infrastructure nodes, then a subset would be defined as
all infrastructure nodes k1 to k2, where 1≤k1≤k2≤N , and
the non-infrastructure nodes connected to them. For every
subset in Q, a packing score is computed and then Q is
reordered using the packing scores. Each subset is passed to
findMapping in order of best packing score first until either
a valid mapping is found or there are no more subsets. The
findMapping method is unchanged from the version used in
MINBW.

There are many possibilities for computing the packing
score. The goal is to map the user graph onto as few in-
frastructure nodes as possible, thereby increasing the number

5

of resources available on each other infrastructure node. As
mentioned above, this is related to minimizing bandwidth
usage across infrastructure nodes, but the results can be
different. Using fewer infrastructure nodes could actually
increase the bandwidth usage between infrastructure nodes in
the subset, but it does decrease the usage (to zero) between
infrastructure nodes in the subset and those not in the subset.
For this initial work, we use a simple packing score. First,
if T ′i has exactly the same number of nodes of each type
as U , then T ′i has the best packing score possible. In other
words, if U could be packed on to T ′i such that T ′i has
no unmapped nodes afterward, then that is the best possible
packing. Otherwise, subsets with more unmapped nodes have
a higher score than those with less unmapped nodes. That is,
the score is simply the number of unmapped nodes in the
subset. This simple scoring scheme treats nodes of different
types equally, but it could easily be extended to give more
or less weight to certain types depending on their relative
availabilities, historical usage, etc.

Algorithm 2 MAXPACK(U,A, l, T, S)
P ⇐ computePossibleTimes(A, l, S)
for all (b, f) ∈ P do
O ⇐ findOverlappingReservations(b, f, S)
T ′ ⇐ T −O
if enoughNodesAvailable(U, T ′) then
Q⇐ findValidSubsets(T ′)
for all T ′i ∈ Q do
Zi ⇐ computePackingScore(U, T ′i)

end for
Q⇐ reorderSubsetsByPackingScore(Q,Z)
for all T ′i ∈ Q do
M ⇐ findMapping(U, T ′i)
if validMapping(M) then
S ⇐ S ∪ (U,M, b, f)
return TRUE

end if
end for

end if
end for
return FALSE

V. EVALUATION

Characterizing testbed scheduler performance is difficult
due to the many parameters that can affect the results. In
this section, we identify a small number of key parameters
to study, and we provide a framework to generate a series of
users requests that put a target average load on the scheduler.
Results are given for response times to new requests and for
the request rejection percentages of the two schedulers.

There are three broad categories of parameters to consider:
the testbed topology, user graph topologies, and length and
start time flexibility of requests.

The ONL testbed graph shown in Figure 2 is used for these
evaluations since the schedulers being evaluated are for use

in ONL. Indeed, MAXPACK is the current ONL scheduler.
We do not vary anything about the base testbed topology,
but we do parameterize the capacity of the infrastructure
edges, denoted IEC. The capacity of these edges is often
the limiting factor which leads to rejecting requests. All of
the infrastructure nodes in ONL are 48 port, VLAN-capable
Ethernet switches that are connected together with vendor-
specific 12 Gb/s stacking connections, so IEC is usually set
to 12. IEC values of 3, 6, 9, and ∞ are also used in the
evaluation.

The various types available in ONL affect how user graphs
are generated. In particular, there are two classes of nodes:
backbone nodes and edge nodes. In Figure 2, the circles,
triangles, and diamonds represent types that are used as
backbone nodes, and the hexagons represent edge nodes. In
the case of ONL, the circles and triangles are two types of
programmable router, the diamonds are NetFPGAs [16], and
the hexagons are PCs. There are enough PCs that the number
of PCs is very rarely the limiting factor when considering a
new request.

User graph topologies are generated using two parameters.
The first parameter is the backbone size, BBS, which is the
number of backbone nodes in the graph. The BBS backbone
nodes are chosen uniformly at random from among all nodes in
the testbed graph. This ensures that no user graph uses more
of any type than are available in the testbed and balances
the number of different types in proportion to the number
available. The chosen backbone nodes are then connected
randomly to form a tree. BBS values will vary from 2 to 8.
The second parameter is the average backbone degree, ABD,
which is used to determine the final shape of the user graph.
Edges are added randomly between backbone nodes until the
number of edges divided by the number of backbone nodes is
at least ABD. ABD values will range from 0.0 to 2.5, where
ABD=0.0 guarantees that no edges will be added beyond the
initial tree. Finally, all unused network interfaces in the user
graph are connected to edge nodes.

The next parameter is the user’s start time flexibility, F .
The flexibility is defined as the length of the start time range,
A=(t1, t2), divided by the reservation length, l. That is, F=
(t2−t1)/l, where t1, t2, and l are given in the same units. F
can range from 0 to 3. Ideally, larger values of F will lead to
lower rejection probabilities.

The final parameter is O, which is the order of request start
times with respect to request arrivals. Of course, the scheduler
operates in an on-line fashion and thus has no control over the
request order, but it is certainly true than many scheduling
problems have solutions that are greatly impacted by the
ordering of input events. In the testbed scheduling context,
requests are naturally in rough order of increasing start time.
We explore three orderings: random, increasing start time, and
decreasing start time.

All of these parameters can ultimately affect the perfor-
mance of a scheduler, so a simple framework is needed to
understand the contributions of the different parameters. We
define the testbed scheduling load, L, to achieve this. Ideally,

6

Fig. 3. MAXPACK response times for different backbone sizes.

the average load reflects the average percentage of resources
used in the testbed. This is complicated by having different
node types, as the percentage of each type currently in use
could be substantially different, and different types could
be the limiting factor at different times. Rather than use a
definition of load that attempts to incorporate these nuances,
we use a simple probabilistic model to generate a sequence
of requests that has the desired load. Given requests with a
particular value of BBS, average lengths of l, B total backbone
nodes in the testbed graph, and a desired load of L, we
compute the average time between request start times, τ , as
τ=((BBS/B) ∗ l)/L. That is, if the average reservation has
length l and uses BBS/B% of the testbed resources, then a
new reservation request should start every τ time units to
achieve an average load of L. All of the following experiments
use this structure to generate 10000 requests with a particular
value of BBS and L. The average reservation duration has
little impact because it is only used to compute τ such that
the desired load is seen across all 10000 requests. The intervals
between successive start times are randomly generated from a
geometric distribution with mean τ .

Experiments were conducted that varied all of the pa-
rameters discussed above. Each experiment ran one of the
schedulers with all of the parameters fixed. The scheduler
processed all 10000 requests and the response times where
recorded for each request. The rejection percentage for the
experiment was also recorded. All of the results presented are

for a load that varies from L = 0.1 to L = 1.0. Each chart
shows the results for different values of one parameter, while
the others parameters remained fixed. Unless otherwise noted,
the following values are used as the default fixed values for
each parameter: IEC =12, BBS =2, ABD =1.5, F =0, and
O= random.

A. Response Time

Figure 3 shows average response time results for MAXPACK
as the backbone size is varied from 2 to 8. First, note the
response times are all under 30 ms. This is typical over the
entire evaluation. Moreover, the maximum response time over
all experiments conducted for this paper was 453 ms. This
occurred using MINBW with BBS=8 and a load of 0.9. In
that experiment, the average response time was 29 ms with
a standard deviation of 19 ms. In a normal testbed usage
scenario, this means that the maximum response time even
including network transit times between the user and the
testbed will be under one second. These results were generated
using a quad-core processor running at 2.4GHz with 4GB of
memory. All execution in the simulation is single-threaded.

The top chart on Figure 3 shows the average response
time for accepted requests, and the bottom chart shows the
same for rejected requests. There are two important trends to
notice. First, the response time increases as the request size
increases. The acceptance times suggest that the increase might
be exponential. This is consistent with a MIP-based scheduler
whose size (number of variables and number of constraints)
increases as the user graph size increases. The second trend is
a decrease in response times as the load increases, particularly
for rejections. This follows because there are fewer resources
left in the testbed graph when the load is higher. Fewer
resources leads to fewer candidate times for the request, and
thus the MIP is called fewer times. This is particularly true
for MAXPACK where there are also fewer candidate subsets to
try. The results for MINBW are not shown, but they are similar
overall. The only notable difference is that the rejection times
are lower (roughly half) because the MIP is called fewer times.

B. Rejection Rate

The second set of results concerns the rejection rate of re-
quests. Two different rejection rates are used to reflect different
aspects of the problem. The first is the absolute rejection rate,
which is the percentage of requests rejected out of the 10000
requests in each experiment. The absolute rejection rate is
useful in understanding the scheduler’s overall performance
from a user’s perspective, i.e., how often their requests get
rejected. The second rate is the scheduler rejection rate. Recall
that the schedulers ensure that there are enough nodes of each
type available before ever trying to find a mapping. Let Rn be
the number of requests that do not proceed past this check for
any of the candidate times. No scheduler can ever accept such
a request because there simply not enough nodes of the correct
types available. Let Rs be the number of requests rejected
otherwise, i.e., those requests for which the scheduler attempts
to find a mapping at least once. The scheduler rejection

7

Fig. 4. Rejection rates for MAXPACK.

rate, then, is defined as Rs/(10000 − Rn). Better schedulers
will have smaller scheduler rejection rates, but even optimal
schedulers may still have non-zero scheduler rejection rates if
there is not enough capacity on the infrastructure edges.

Figure 4 shows both rejection rates for a set of MAXPACK
experiments. The left column of charts shows the rejection
rates where BBS is varied from 2 to 8, the center column
shows rejection rates where F is varied from 0 to 3, and
the right column shows rejection rates where IEC is varied
from 3 to ∞. In each column, the top chart shows absolute
rejection rates, and the bottom chart shows scheduler rejection
rates. Experiments were also conducted that varied ABD and
O but are omitted here. Different values of ABD have little
impact on the rejection rates. Requests ordered by start time,
increasing or decreasing, do have lower rejection rates than
for random orderings, with a maximum absolute difference of
around 10% under high load. Results were also gathered for
MINBW, but the rates are all similar to within a few percent
for every experiment.

Overall, varying the BBS parameter has the largest impact
on absolute rejection rate. As the number of backbone nodes in
each request increases, it becomes more likely that overlapping
requests will overuse at least one of the node types. This
is confirmed by observing that the differences in scheduler
rejection rate for different values of BBS are much smaller
than the differences in the absolute rate.

The scheduler rejection rate is affected most dramatically by
varying the IEC parameter. First note that IEC=∞ removes
any bandwidth limitations from the testbed graph which results
in a zero scheduler rejection rate, as expected. Across all loads,
the scheduler rejection rate is much greater for smaller values

of IEC. It is interesting to note the rates are very close for
IEC=6 and IEC=9, but the gap increases as IEC decreases
and as it increases away from that point. This suggests that
a transition in behavior occurs somewhere between values
of 6 and 9. If so, it is likely that this is a transition from
being fundamentally constrained by the available infrastructure
edge bandwidth to being constrained by the performance of
a heuristic scheduler. The other possibility is that it is an
artifact of the testbed topology that has the only 4 nodes of
one type connected to the same infrastructure node. This was
done because those 4 nodes are generally only used together
in practice and not in combination with the other backbone
node types.

As expected, the flexibility does decrease the rejection rates.
The most benefit is gained near loads of 50% because that is
where the scheduler is able to use the flexibility to fit the
request in other available times. Most requests are accepted
for lower loads regardless of the flexibility, and resource
contention is too high for flexibility to help when the load is
higher. Also note the quickly diminishing returns for flexibility
beyond 2. In ONL, users can refer to charts that show how
many nodes of each type are currently reserved for future times
of up to two weeks in advance. This allows users to choose
times when they more likely to have their request accepted.

VI. DISCUSSION

Our MIP-based approach works reasonably well given the
parameters explored in the previous section. More importantly,
the MAXPACK scheduler has been used in ONL for the past
several months and our experience has been positive. This is
due in large part to the usage patterns seen in the testbed.
During the summer months, the average load is small (less

8

than 30%), and most of that load is from research projects
which tend to use larger, more diverse topologies. On the other
hand, the average load is higher (closer to 50%) during the fall
and spring semesters when ONL is used mostly by students in
networking courses. Course topologies are, however, generally
much smaller. As seen in the evaluation, the scheduler can
handle many smaller topologies or a few larger topologies.

Scaling up to handle higher loads is not trivial. Increasing
the testbed graph size does not impact our performance
directly, but having more resources available allows users to
build larger virtual networks. Rejection rates will be largely
unaffected, assuming that user graphs increase proportionally
to the testbed graph. Response times, however, could grow
to be unacceptably large because the number of variables
and constraints in the MIP increases linearly with the user
graph size. If there are N infrastructure nodes in the testbed
graph, L distinct node types in the user graph, |V | nodes
in the user graph, and |E| edges in the user graph, then
there are O(N |V | + (N−1)|E|) variables and O((N −1) +
|V |+ LN + (N−1)|E|) constraints. Larger user graphs thus
have proportionally larger MIP formulations, which leads to a
potentially exponential increase in response time.

In the future, we plan to explore how our approach works
with different testbed graph topologies. Modifying our for-
mulation for star-based testbed topologies is relatively simple.
Slightly more general tree-based topologies could potentially
be supported as well. There is a fundamental limitation to
our approach, however. Using indicator variables to store the
mapping of user graph nodes to infrastructure nodes in the
testbed allows us to easily compute the bandwidth along all
the associated paths directly. This assumes that there is only
one path between any two nodes in the testbed graph. If
there are multiple possible paths, as in a ring topology, then
the current MIP formulation has no way to choose between
them. A different approach would be needed to support such
topologies.

Another alternative to consider is to allow different network
interfaces on a node to be connected to different infrastructure
nodes. This could result in less bandwidth along infrastructure
edges, but would require a new MIP formulation where
each network interface on each user node is assigned to a
particular infrastructure node. The trade-off is that this would
substantially increase the number of variables in the MIP and
thus could lead to higher response times.

It would also be interesting to explore how approaches such
as ours could be used in other testbeds. For example, the GENI
[17] initiative could result in a very large scale testbed with
many diverse types of resources. Normal experiments in such
a testbed are likely to be much more long-term, lasting days
or weeks rather than a few hours. In that case, response times
to a scheduling request could be allowed to increase as well,
meaning that our approach might be viable there as well.

VII. CONCLUSION

Allowing users in emulation testbeds to reserve resources
in advance is clearly a useful feature for anyone who has used

an on-demand system and had to wait until enough resources
became available to run their experiment. It does, however,
substantially complicate the problem by adding a scheduling
component to an already difficult mapping problem. We have
presented a new class of heuristic, MIP-based schedulers that
attempt to solve this problem. Our approach keeps response
times low and accepts a large percentage of reasonable re-
quests. One of these schedulers is already being used quite
effectively in the ONL testbed.

REFERENCES

[1] J. DeHart, F. Kuhns, J. Parwatikar, J. Turner, C. Wiseman, and K. Wong,
“The open network laboratory,” in SIGCSE ’06: Proceedings of the 37th
SIGCSE Technical Symposium on Computer Science Education. New
York, NY, USA: ACM, 2006, pp. 107–111.

[2] ONL, “Open network laboratory website. http://onl.wustl.edu.” [Online].
Available: www.onl.wustl.edu

[3] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold,
M. Hibler, C. Barb, and A. Joglekar, “An integrated experimental
environment for distributed systems and networks,” in OSDI ’02:
Proceedings of the 5th Symposium on Operating Systems Design and
Implementation. New York, NY, USA: ACM, 2002, pp. 255–270.

[4] R. Ricci, C. Alfeld, and J. Lepreau, “A solver for the network testbed
mapping problem,” SIGCOMM Comput. Commun. Rev., vol. 33, no. 2,
pp. 65–81, 2003.

[5] R. Ricci, D. Oppenheimer, J. Lepreau, and A. Vahdat, “Lessons from
resource allocators for large-scale multiuser testbeds,” SIGOPS Oper.
Syst. Rev., vol. 40, no. 1, pp. 25–32, 2006.

[6] T. Benzel, R. Braden, D. Kim, C. Neuman, A. Joseph, K. Sklower,
R. Ostrenga, and S. Schwab, “Design, deployment, and use of the deter
testbed,” in DETER: Proceedings of the DETER Community Workshop
on Cyber Security Experimentation and Test on DETER Community
Workshop on Cyber Security Experimentation and Test 2007. Berkeley,
CA, USA: USENIX Association, 2007, pp. 1–1.

[7] WAIL, “Wisconsin advanced internet laboratory web-
site. http://www.schooner.wail.wisc.edu/.” [Online]. Available:
http://www.schooner.wail.wisc.edu/

[8] L. Peterson, T. Anderson, D. Culler, and T. Roscoe, “A blueprint for
introducing disruptive technology into the internet,” in Proceedings of
HotNets–I, Princeton, New Jersey, October 2002.

[9] D. Oppenheimer, J. Albrecht, D. Patterson, and A. Vahdat, “Distributed
resource discovery on planetlab with sword,” in WORLDS ’04: Pro-
ceedings of the First Workshop on Real, Large Distributed Systems,
December 2004.

[10] J. Considine, J. W. Byers, and K. Meyer-Patel, “A constraint satisfaction
approach to testbed embedding services,” SIGCOMM Comput. Commun.
Rev., vol. 34, no. 1, pp. 137–142, 2004.

[11] J. Lu and J. Turner, “Efficient mapping of virtual networks onto a shared
substrate,” Washington University, Tech. Rep., June 2006.

[12] Y. Zhu and M. Ammar, “Algorithms for assigning substrate network
resources to virtual network components,” in Proc. 25th IEEE Interna-
tional Conference on Computer Communications INFOCOM 2006, Apr.
2006, pp. 1–12.

[13] M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking virtual network
embedding: substrate support for path splitting and migration,” SIG-
COMM Comput. Commun. Rev., vol. 38, no. 2, pp. 17–29, 2008.

[14] J. Newsome and D. Song, “Gem: Graph embedding for routing and
data-centric storage in sensor networks without geographic information,”
in SenSys ’03: Proceedings of the 1st international conference on
Embedded networked sensor systems. New York, NY, USA: ACM,
2003, pp. 76–88.

[15] D. G. Andersen, “Theoretical approaches to node assignment,”
2002. [Online]. Available: http://www.cs.cmu.edu/ dga/papers/andersen-
assign-abstract.html

[16] J. Naous, G. Gibb, S. Bolouki, and N. McKeown, “Netfpga: reusable
router architecture for experimental research,” in PRESTO ’08: Pro-
ceedings of the ACM workshop on Programmable routers for extensible
services of tomorrow. New York, NY, USA: ACM, 2008, pp. 1–7.

[17] GENI, “Global environment for network innovations website.
http://www.geni.net.” [Online]. Available: www.geni.net

9

