
Department of Computer Science & Engineering

2009-80

Design and Evaluation of a Practical, High Performance Crossbar
Scheduler

Authors: Jonathan Turner

Corresponding Author: jon.turner@wustl.edu

Web Page: http://arl.wustl.edu/~jst

Abstract: The Least Occupied Output First (LOOFA) scheduler is one of several unbuffered crossbar schedulers
that provides strong performance guarantees when operated with a speedup of 2 or more. Because LOOFA
requires the computation of a maximal matching, it has been considered too slow for use in systems with link
rates of 10 Gb/s or more. This paper studies an approximate variant of LOOFA described briefly in [16]. We
introduce a general family of schedulers that allows for partial sorting and that includes the LOOFA scheduler as
a special case. We show that all schedulers in this class are work-conserving and use this to provide insight into
the operation of the Approximate LOOFA scheduler and a stronger motivation for its use. We provide a detailed
design of the ALOOFA scheduler in order to evaluate its implementation complexity and performance
characteristics. We also introduce a simple, natural lower bound on the performance of crossbar schedulers and
use it to show that a previously proposed “stress test” traffic pattern is in fact difficult to schedule well. Our result
implies that non-trivial speedups are required for ideal worst-case scheduling performance, something that has
been generally assumed to be true, but never conclusively demonstrated. We also compare the performance of
both LOOFA variants to our lower bound on stress test traffic and observe that for speedups between 1 and 2,
the performance of both variants stays within 25% of the lower bound, and that the performance characteristics

Type of Report: Other

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160

Design and Evaluation of a Practical,

High Performance Crossbar Scheduler
 Jonathan Turner

jon.turner@wustl.edu

Abstract

The Least Occupied Output First (LOOFA) scheduler is one of several unbuffered crossbar
schedulers that provides strong performance guarantees when operated with a speedup of 2
or more. Because LOOFA requires the computation of a maximal matching, it has been
considered too slow for use in systems with link rates of 10 Gb/s or more. This paper stu-
dies an approximate variant of LOOFA described briefly in [16]. We introduce a general
family of schedulers that allows for partial sorting and that includes the LOOFA scheduler
as a special case. We show that all schedulers in this class are work-conserving and use this
to provide insight into the operation of the Approximate LOOFA scheduler and a stronger
motivation for its use. We provide a detailed design of the ALOOFA scheduler in order to
evaluate its implementation complexity and performance characteristics. We also introduce
a simple, natural lower bound on the performance of crossbar schedulers and use it to show
that a previously proposed “stress test” traffic pattern is in fact difficult to schedule well.
Our result implies that non-trivial speedups are required for ideal worst-case scheduling
performance, something that has been generally assumed to be true, but never conclusively
demonstrated. We also compare the performance of both LOOFA variants to our lower
bound on stress test traffic and observe that for speedups between 1 and 2, the performance
of both variants stays within 25% of the lower bound, and that the performance characteris-
tics of the two variants are essentially indistinguishable.

1. INTRODUCTION
The Least Occupied Output First (LOOFA) crossbar scheduling algorithm [6] is one of a number of such
algorithms that offers strong performance guarantees [2,4,5,10,17,20]. In particular, when used with cross-
bars with a speedup of 2 or more, it guarantees work-conserving behavior, ensuring that none of the out-
put link capacity is lost due to less-than-ideal scheduling. The LOOFA scheduler also provides better
fairness properties than other schedulers with similar worst-case performance, when operated with smaller
speedups. Unfortunately, schedulers for unbuffered crossbars with strong performance guarantees have
yet to see much practical application, as they are difficult to implement in high performance systems. The
key difficulty has been the requirement that the scheduler compute maximal matchings, or in some cases,
stable matchings, in order to provide the performance guarantee.

The Approximate LOOFA (ALOOFA) scheduler was introduced briefly in [16], as a practical variant
of the LOOFA scheduler. The authors argued that ALOOFA could be implemented efficiently in hard-
ware and provided performance that was essentially indistinguishable from LOOFA. One of the intriguing
aspects of the ALOOFA scheduler is that it does not compromise in the matching computation, but in the

- 2 -

sorting operation needed to maintain an ordered list of output queue lengths. The authors argue that since
queue lengths change slowly, their order can be adequately maintained by applying a single odd-even
sorting step after each operational cycle.

This paper provides a more detailed examination of the ALOOFA scheduler, in order to determine if
ALOOFA is in fact a practical alternative for high performance crossbars. In order to gain greater insight
into ALOOFA, we define a general class of scheduling algorithms that allows for partial sorting and show
that all schedulers in this class are work-conserving when operated with speedups of 2. This class in-
cludes LOOFA, but not ALOOFA. Still, our analysis does provide a stronger justification for the use of
partial sorting in ALOOFA and allows us to more clearly identify the important differences between these
two scheduling algorithms. We describe a complete hardware implementation of ALOOFA in order to
more fully evaluate its hardware complexity and performance. This reveals that while the essential asser-
tion in [16] remains valid, the complexity and performance of the ALOOFA scheduler is determined
largely by the circuitry needed to support various overhead functions, not the central matching operation.
We also introduce a non-trivial lower bound on the performance of unbuffered crossbar schedulers and
show that a so-called “stress test” traffic pattern introduced in [16] is in fact challenging, when it comes to
worst-case performance. Specifically, we show that for this traffic pattern, no crossbar scheduler (includ-
ing “offline” schedulers that have advance knowledge of the complete traffic pattern) can match the per-
formance of an ideal output-queued switch unless operated with a non-trivial speedup. This confirms a
widely believed, but previously unverified conjecture. Finally, we study the performance of both LOOFA
and ALOOFA on stress test patterns and show that they typically complete the transfer of all cells through
the crossbar in a time that is within 25% of that implied by the lower bound.

The performance of crossbar schedulers for packet switches has been studied extensively since the ear-
ly 1990s. Anderson, et al described the Parallel Iterative Matching (PIM) method used in the DEC AN2
switch in 1993 [1]. This was the inspiration for a number of subsequent schedulers, including the popular
i-SLIP method of McKeown [12] in 1999. The performance studies of this period were largely based on
simulation, and typically focused on traffic patterns that were relatively benign in nature. The late nineties
saw the appearance of the first worst-case results that provided strong performance guarantees, indepen-
dent of the incident traffic. The simplest such results established conditions under which a crossbar sche-
duler was work-conserving, meaning that it never failed to forward a cell to an output, if there was a cell
for that output, anywhere in the system [6]. Other papers established conditions under which a scheduler
was not only work-conserving but forwarded cells in the order they were received, regardless of the input
on which they arrived [17]. In a seminal paper, Chuang et al, showed that certain schedulers can exactly
emulate an output-queued switch that uses any one of a wide class of queueing disciplines [3]. All of these
results require that the crossbar be operated with a speedup of 2 relative to the external links, and require
the computation of either a maximal matching or a stable matching. This requirement makes them diffi-
cult to implement in high performance systems and has limited their practical application.

More recently, there has been a growing interest in buffered crossbars that are capable of storing a
small number of cells or packets at each of a crossbar’s crosspoints [5,7,8,10,14,15,18]. While this signifi-
cantly increases the circuit complexity of the crossbar, ongoing improvements in integrated circuit density
make it a practical alternative. What makes buffered crossbars attractive is the fact that they are easier to
control, making it possible to obtain good worst-case performance guarantees using relatively simple
scheduling methods [3]. Buffered crossbars also make it possible for inputs and outputs to operate asyn-
chronously, allowing direct switching of variable length packets. References [2,20] shows how worst-case
performance results developed for cell-based switches can be extended to buffered crossbars that switch
variable length packets.

There is a separate category of crossbar performance results that focuses on performance for random
traffic that is admissible, meaning that the incoming traffic does not exceed the capacity of any outgoing
link for an extended period of time [9,11,13]. Results of this form are often referred to as 100% through-

- 3 -

put results, or stability results. These results typically do not require a speedup, but also fail to provide the
kind of strong guarantee that the worst-case results provide. Given the highly variable and unpredictable
nature of internet traffic, schedulers that can provide worst-case guarantees seem preferable, so long as
their cost is not exorbitant.

In Section 2, we introduce a family of crossbar schedulers that generalize the LOOFA scheduler and
show that all schedulers in the class are work-conserving. Section 3, we provide a complete description of
the ALOOFA scheduler and explain the basic characteristics that make it an attractive candidate for high
performance crossbars. In Section 4, we describe a specific implementation of the ALOOFA scheduler,
and use it to evaluate the circuit complexity and performance. In Section 5, we present bounds on the
scheduling performance of crossbar schedulers and examine how LOOFA and ALOOFA perform, rela-
tive to these bounds. We conclude in Section 6 with some closing remarks.

2. A FAMILY OF WORK-CONSERVING CROSSBAR SCHEDULERS
We are concerned with scheduling the transfer of fixed length cells from inputs to outputs of a crossbar
switch with no internal buffering. To enable good worst-case performance, crossbars can be operated with
a speedup S that supports a peak cell transfer rate through the crossbar that is S times larger than the rate
at which cells arrive on the inputs. For typical values of S, this means that queueing is required at both
inputs and outputs to the crossbar. The systems we consider are equipped with Virtual Output Queues
(VOQ) at each input and have a single FIFO queue at each input. Specifically, each input i maintains a
VOQ Vij containing all the cells it has that are to be transferred to output j, and each output j maintains a
queue Qj of cells waiting to be sent on its outgoing link. Since a crossbar can accept at most one cell at a
time from each input, and deliver at most one cell at a time to each output, there is some system-level
coordination required to determine which cells are transferred when. This is done using a crossbar con-
troller that implements a scheduling algorithm. We say that a scheduling algorithm is work-conserving if
it does not allow any output link capacity to be wasted. More precisely, work-conservation implies that
whenever there is a cell for output j in any VOQ, some cell is being sent on output j.

As its name suggests, the LOOFA scheduling algorithm matches inputs to outputs, while giving priori-
ty to those outputs with the fewest cells in their out-going queues. This is a natural greedy strategy, if our
objective is to keep output links busy whenever possible. We can view the LOOFA scheduler as operating
iteratively, processing the outputs in non-decreasing order of their queue lengths. When an output is con-
sidered, it is matched with an input that has not yet been matched to any output, and that has a cell to
transfer to the current output. When multiple inputs are available to match a given output, a variety of
selection criteria can be applied. The worst-case performance guarantee for systems with speedups of 2 or
more, is independent of the criteria used to select inputs. However, the input selection criteria can become
important for systems operated with smaller speedup; in these cases, criteria that seek to provide fairness
among the inputs are natural choices.

We describe a family of Generalized LOOFA (GL) schedulers and show that any GL scheduler is
work-conserving when operated with a speedup of 2. Although, the ALOOFA scheduler is not a GL
scheduler, our analysis provides some interesting insights into its operation. For clarity, we view a cross-
bar as operating in discrete phases. During an arrival phase cells are received at the inputs and placed in
VOQs. During a transfer phase, cells are transferred through the crossbar from VOQs to output queues.
During a departure phase, cells are removed from output queues and sent on the outgoing links. Systems
with speedup of 2 have two transfer phases in each operational cycle. We assume that the transfer phases
occur between the arrival and departure phases.

The GL schedulers all maintain a list of active VOQs for each input. When a VOQ Vij becomes active
(that is, transitions from empty to non-empty), it is inserted at some position in the list for input i. When a
VOQ becomes inactive, it is removed from its input’s list. A GL scheduler inserts a newly active VOQ Vij
in the list using the following insertion policy.

- 4 -

Insert Vij either at the beginning of the list or immediately following any Vih for which the
number of cells in Qh is less than or equal to the number in Qj.

A GL scheduler selects VOQs from which to transfer cells through the crossbar by performing the follow-
ing VOQ selection step for each input i.

Select the first Vij in the VOQ list at input i that does not conflict with any VOQ selected
in an earlier step.

Here, a conflicting VOQ is simply one that contains cells for the same output. A GL scheduler may also
re-order the VOQs in its lists by performing the following compare-and-swap operation.

Select any two active VOQs Vih and Vij for which Vih immediately precedes Vij in the
scheduling list at input i. If the number of cells in Qj is less than the number in Qh, ex-
change the positions of Vih and Vij in the list.

Note that there is no requirement that a GL scheduler perform any compare-and-swaps. Also note that the
LOOFA scheduler can be viewed as the special case of the GL scheduler in which we precede the VOQ
selection step at input i with enough compare-and-swap operations to fully sort the list according to the
number of cells in the output queues.

To facilitate the analysis of the GL schedulers, we introduce some notation. First, let vij be the number
of cells in Vij and let qj be the number in Qj. Let pij be vij plus the number of cells in all VOQs that come
before Vij in the VOQ list at input i. Define slackij=qj – pij. Note that anytime output j fails to send a cell
while Vij contains a cell, slackij must be less than zero. Consequently, we can show that a scheduler is
work-conserving by establishing that slackij cannot be negative at the start of a departure phase. The fol-
lowing lemmas enable us to do that.

Lemma 1. If Vij is active immediately before and after a transfer phase, then slackij increases by at least 1
during the transfer phase.

proof. If Vij or one of the VOQs that comes before Vij in the input list at input i is selected during the
transfer phase then pij is reduced by 1. If neither Vij nor one of the VOQs that precedes it is selected, then
some other input must transfer a cell to output j during the transfer phase, causing qj to increase by 1. In
either case, slackij increases by 1. ■

Next, let’s consider the effect of compare-and-swap operations.

Lemma 2. A compare-and-swap operation that exchanges the positions of VOQs Vih and Vij increases the
value of min{slackih, slackij} by at least 1.

proof. Assume that Vih comes before Vij in the list at input i and note qh>qj. Also note that swapping Vih
and Vij reduces pij and hence increases slackij. A swap does increase pih (hence reducing slackih), but the
new value of pih is the same as the original value of pij, and since qh>qj, the new value of slackih is larger
than the old value of slackij. Hence the new values of both slackih and slackij are at least 1 larger than the
original value of slackij, which is at least as large as the original value of min{slackih, slackij}. ■

If we let minSlacki=minj slackij, Lemma 2 allows us to conclude that a compare-and-swap cannot cause
minSlacki to decrease and consequently, a whole series of compare-and-swaps can produce no net de-
crease in minSlacki. Lemma 1 implies that minSlacki increases by 1 during each transfer phase. Also note
that a departure phase causes minSlacki to decrease by at most 1. These observations lead to our next
lemma.

Lemma 3. In a crossbar with a speedup of 2 and a GL scheduler, if any VOQ is active at input i just before
a departure phase, then minSlacki ≥1.

- 5 -

proof. The proof is by induction on the time step t. Note that when t=0, all VOQs are empty and so the
claim is trivially satisfied. Assume then that the claim is true at all time steps that precede t. This implies
that if there are any active VOQs at input i at the start of time step t, then minSlacki ≥0.

If no new VOQ becomes active during the arrival phase of step t, then minSlacki can decrease by at
most 1 during the arrival phase and hence, minSlacki ≥ –1 right after the arrival phase (assuming some
VOQ is active). So assume that some Vij became active during the arrival phase of time step t. If Vij was
inserted at the front of the VOQ list at input i then immediately after the arrival phase, we have slackij ≥–1
and hence, minSlacki ≥ –1. Now suppose that Vij was inserted immediately after Vih. Since minSlacki ≥0
just before the arrival phase, slackih ≥0 also. Since, Vij was inserted after Vih, slackih ≥0 after the arrival
phase as well. Since qh≤qj (by the GL insertion policy) and vij=1, slackij ≥slackih –1 following the arrival
phase, implying that minSlacki ≥ –1.

So, in all cases, minSlacki ≥ –1 after the arrival phase in step t or there is no active VOQ. Since each
of the two transfer phases in step t increases minSlacki by 1 and any compare-and-swaps performed by the
scheduler do not decrease minSlacki, we have minSlacki ≥1 before the departure phase in step t or there are
no active VOQs. ■

Since, minSlacki ≥1 before any departure phase for which input i has active VOQs, slackij ≥1 for all
active VOQs. This yields the work-conservation result stated in the following theorem.

Theorem 1. All GL schedulers are work-conserving.

It’s interesting to note that no compare-and-swap operations are required for work-conservation.
Lemma 2 shows that they can’t do any harm, but they are not necessary. The only thing that is really es-
sential is the insertion policy. The LOOFA scheduler effectively follows this insertion policy, but takes
the additional step of keeping the VOQs sorted by output occupancy. Because LOOFA maintains a fully
sorted order, the VOQ lists at all inputs have a consistent ordering, although different inputs may have
different sets of active VOQs. This means that a LOOFA scheduler can maintain a single list of outputs,
rather than a separate list for each input.

Because LOOFA can use a single list when making scheduling decisions, it’s possible to perform the
required matching of inputs to outputs using a simple and fairly fast circuit and this was one of the key
motivations for the ALOOFA scheduler described in [16]. However, in ALOOFA, the list is only approx-
imately ordered. Specifically, the ALOOFA scheduler performs a prescribed set of compare-and-swap
operations that make it “more sorted” but not fully sorted. It limits the number of compare-and-swaps
done in order to enable high speed operation. Now, based on our earlier analysis, one might jump to the
conclusion that the approximate sorting done by ALOOFA does not prevent us from achieving work-
conservation. However, it does. ALOOFA is not a GL scheduler, because it effectively violates the GL
insertion policy. When a VOQ Vij becomes active in ALOOFA, its output is not repositioned in the single
output list. So, if output j’s immediate predecessor in the list has more cells in its output queue than out-
put j does, we have a violation of the insertion policy. Such violations tend to get quickly “repaired” by
the compare-and-swap operations done by ALOOFA, but they remain violations.

Hence, we cannot conclude that ALOOFA is work-conserving, and indeed it’s easy to find traffic pat-
terns that demonstrate that it’s not work-conserving. Still, it is tantalizingly close, and its practical advan-
tages make it a worthwhile option in real systems, which are often operated with a speedup substantially
smaller than the 2× needed for worst-case performance guarantees anyway.

3. APPROXIMATE LOOFA
Here, we review the approximate LOOFA crossbar scheduler, first introduced in [16] and fill in certain
details that were just sketched in the original paper. However, before describing ALOOFA, we need to
describe the LOOFA scheduler on which it is based. As its name implies, the LOOFA scheduling algo-
rithm matches inputs to outputs, while giving priority to those outputs with the fewest cells in their out-

- 6 -

going queues. This is a natural greedy strategy, if our objective is to keep output links busy whenever
possible. We can view the LOOFA scheduler as operating iteratively, processing the outputs in non-
decreasing order of their queue lengths. When an output is considered, it is matched with an input that has
not yet been matched to any output, and that has a cell to transfer to the current output. When multiple
inputs are available to match a given output, a variety of selection criteria can be applied. The worst-case
performance guarantee for systems with speedups of 2 or more, is independent of the criteria used to se-
lect inputs. However, the input selection criteria can become important for systems operated with smaller
speedup; in these cases, criteria that seek to provide fairness among the inputs are natural choices.

The ALOOFA scheduler was inspired by the observation that the matching required for LOOFA could
be implemented efficiently in hardware by a relatively simple N×N array of circuit elements. The key idea
is illustrated in Figure 1. The left-most part of the figure shows a 6×6 matcher array. Each element of the
matcher array corresponds to an input-output pair, and stores one bit of information, indicating whether or
not the given input has cells to send to the given output. In the figure, input-output pairs with cells wait-
ing to pass through the crossbar are indicated by squares within the matcher array cells. So for example,
input e has cells to send to outputs b and d.

Note that below the matcher array, the output queue lengths are shown. These are maintained in sorted
order with the shortest queue lengths on the left. The output labels indicate which output is associated
with a given queue length. So for example, output b has 3 cells, while output f has 4. The matcher array
attempts to match inputs to outputs by processing cells from left-to-right and from bottom-to-top. A given
cell can be matched so long as there is no other matched cell to its left in the same row or below it in the
same column.

 The center portion of the figure illustrates such a match. The match from input b to output a, near the
lower left of the array, eliminates from contention any other matches in the first column from the left and
the second row from the bottom. The other dark squares in the diagram indicate other matches. These
matches can be found using the simple combinational circuit shown in the right portion of the figure. This
circuit is repeated for every cell, with the D flip flop being set to a 1 if (and only if) that cell is active,
meaning that its input has one or more cells for its output. The right-hand row busy signal is high if either
the left-hand signal is asserted, or if the cell is active and the incoming column busy signal is low. Simi-
larly, for the the outgoing column busy signal. Since these signals always flow up and to the right, the
time required to find a matching is about 2n gate delays. For a modern ASIC process with gate delays of
under 50 ps, a 32 port matcher circuit requires less than 2 ns to find a maximal matching.

To maintain the outputs in approximate sorted order, the ALOOFA controller performs a single odd-
even sorting step as part of each operational cycle. Before the swap is performed, the queue lengths are
adjusted to reflect transfers of cells into or out of an output queue (note that queue lengths can only
change by 1). Following the queue length adjustment, the queue lengths for the odd-even column pairs
are compared, and if out-of-order, they are swapped. Note that the columns of the matcher array are

0 1 3 3 4 5
a e b d f c

0 1 3 3 4 5
a e b d f c

f
e
d

b
c

a

in
pu
ts

outputs
column busy

D

column busy

ro
w
 b
u
sy

ro
w
 b
u
sy

output
queue
lengths

Figure 1. Approximate LOOFA matcher

- 7 -

swapped along with the queue lengths. Next, the even-odd column pairs are compared, and swapped if
necessary.

In the example shown in Figure 2, the odd-even swap succeeds in restoring a sorted order. This is not
guaranteed to occur in all cases, but it does occur often, since queue lengths change so little from one step
to the next. Even when it does not occur, queue lengths typically do not get very far out of order. Note
that it is only the sorting step that makes ALOOFA approximate. So long as outputs are sorted, the match-
ing produced by ALOOFA is exactly the matching prescribed by LOOFA. Indeed, if the ALOOFA sche-
duler performed N/2 sorting steps, it could guarantee that the outputs remained in sorted order, but this
would make it difficult to achieve a high performance implementation.

Note that as presented so far, the ALOOFA matcher gives top priority to the input at the bottom row of
the array. To avoid giving some inputs a systematic advantage over other inputs, we can re-order the rows
of the array so as to avoid favoring any inputs over others. Reference [16] suggests doing this by applying
a random shuffling of the rows. This is illustrated in Figure 3. In this scheme, adjacent rows of the array
are randomly exchanged, then all are passed through a perfect-shuffle pattern. This can be done after
every operational step to ensure a high degree of input fairness. An alternative to random shuffling is to
simply rotate the rows. While this is simpler, it can still result in significant unfairness; if we applied row
rotation to our example matcher, input a would still have priority over input b for five out of every six
operational cycles.

The shuffling of the rows and columns of the matcher array creates a new issue. Since the input and
output signals to the crossbar controller appear on pins at fixed positions on the controller chip, we need
some way to maintain the connection between these pins and the shifting rows and columns of the match-
er array. This can be handled by adding input and output crossbars, that maintain connections between
fixed IO pins and dynamically changing matcher rows and columns.

In Figure 4. the filled in crosspoints are “closed” indicating a connection between the corresponding

1 0 3 4 3 4
a e b d f c

1 0 3 43 4
a e b df c

0 1 3 3 4 5
a e b d f c

f
e
d

b
c

a

initial state

queue lengths change
by at most 1

compare & swap
odd-even columns

final state

compare & swap
even-odd columns

10 3 43 4
ae b df c

f
e
d

b
c

a

f
e
d

b
c

a

f
e
d

b
c

a

Figure 2. Odd-even swap to maintain approximate sorted order

1 0 4 2 6 4
a e b d f c

f
e
d

b
c

a

1 0 4 2 6 4
a e b d f c

f

b

c

a

e

d

perfect
shuffle

random
settings

Figure 3. Row shuffling

- 8 -

row and column. By swapping the rows of the input crossbar along with the rows of the matcher, we
maintain the correct relationship between the IO pins and the matcher rows. Similarly, by swapping the
columns of the output crossbar along with the columns of the matcher, we maintain the correct relation-
ship between the matcher columns and the output pins.

4. DETAILED DESIGN
Reference [16] provides a good case for ALOOFA as a practical crossbar scheduler, but provides too little
detail to enable a serious evaluation. A complete crossbar scheduler must interface with input and output
line cards, and perform all the individual steps required by the algorithm in an appropriate sequence. The
handling of these details can have significant impact on the circuit complexity and the achievable perfor-
mance. In this section, we describe an actual implementation of the ALOOFA crossbar scheduler. This
design has been fully specified in VHDL, and synthesized for implementation on a Xilinx Virtex 5
FPGA. We describe the complexity, performance and scaling characteristics of the synthesized circuit.

4.1 Input and Output Interfaces
The controller has an input-side interface, which provides signals used to communication with input line
cards in a router or switch, and an output-side interface, providing signals for communication with output
line cards. The input-side interface includes the following signals.

• onOff - This is an N bit signal used to turn on turn on and off the data present bits in the matcher ar-
ray of the crossbar controller. Specifically, during the first clock tick of the controller's operational
cycle, onOff(i) is asserted to indicate that input i has cells for the output specified by target(i),
so the matcher's data present bit indicating the presence of traffic from input i to output target(i)
should be set. During the second clock tick of the controller's operational cycle, onOff(i) is asserted
to indicate that it no longer has cells for the output specified by target(i), so the matcher's data
present bit indicating the presence of traffic from input i to output target(i) should be cleared.
Note that for each input, there is at most one cell arrival and one cell departure per operational cycle,
so most of the data present bits in the matcher remain the same from one cycle to the next.

• target - This is an N word signal, where each word specifies a crossbar output. Its use was de-
scribed in the previous paragraph.

• grant - This is an N bit signal; grant(i) is asserted if input i has been selected to send a cell.

• sendTo - This is an N word signal; when grant(i) is asserted, sendTo(i) identifies the output
that input i should send a cell to.

a b c ed f

0 1 3 3 4 5

a

e

b

d

f

c

input pins

output
pins

input xbar

output xbar

Figure 4. Matcher with IO crossbars

- 9 -

The output interface includes the following signals.

• plusMinus – This is an N bit signal; plusMinus(j) is asserted to indicate that the queue length
for output j should be increased or decreased by 1.

• active – This is an N bit signal; active(j) is asserted if output j has been selected to receive a
cell.

• recvFrom – This is an N word signal; if active(j) is asserted, recvFrom(j) identifies the input
that will send a cell to output j.

We note that other interface definitions are certainly possible, and that the choice of interface can have a
significant effect on both circuit complexity and performance. We discuss some of these alternatives be-
low.

4.2 Operational Cycle
The ALOOFA scheduler operates on a periodic schedule extending over seven clock periods, as shown in
Figure 5. The first two clock periods are used for receiving data from the input and output line cards. Spe-
cifically, on the rising edge of clock tick 0, the input line cards signal which matcher cells should “turn
on” (if any) and during clock tick 1, they signal which matcher cells should turn off. Concurrently, the
output line cards signal which queue lengths should be increased by one, and which should be decreased
by one.

The next two clock ticks are used to match inputs to outputs. Two clock ticks are allocated to the
matching to allow time for signals to propagate through the complete matching array. There are two ap-
proaches one can take to implementing this. One approach is to allow the signals to simply propagate
through the matcher over two cycles and use the output signals from matcher at the end of the second
clock cycle. Implementing this approach in the context of modern CAD tools suites, requires the explicit
identification of so-called multi-cycle circuit paths to inform circuit synthesis tools that these paths can
tolerate larger than normal circuit delays. It turns out that this is a relatively tedious manual process, in
most CAD tool suites. Consequently, we have adopted the common practice of introducing a bank of
pipeline registers to explicitly break the combinational circuit paths into two parts that are handled during
different clock ticks. This allows the CAD tools to treat all circuit paths in a uniform way. In the case of
the matcher, the pipeline registers are positioned along the top-left to bottom-right diagonal of the match-
ing array.

Following the matching process, an odd-even sorting step is performed over two clock ticks. After
this, rows are swapped randomly, using the random exchange and shuffle procedure described earlier.

clk

start

state idle match2match1turnOffturnOn swapRowsswapEvenswapOdd turnOn

turnOn
target

1

plusMinus

grant
sendTo

active
recvFrom

0 2 6543 0

Figure 5. Timing of IO and internal operations

- 10 -

4.3 Implementation Details
The block diagram in Figure 6 provides a more detailed picture of the major components of the crossbar
controller and some of the key internal signals linking various components. The input-side interface is
shown at the top left. Note that the arriving inputs and departing outputs all pass through clocked registers
at the interface. The same is true for the output-side interface signals at the bottom right. Also note that
the signals on the input and output side have corresponding signals at the interface to the matcher, that are
propagated through the input and output crossbars. The matcher’s version of these signals are all prefixed
with an ‘m’ to distinguish them from the external interface signals.

The state register controls the timing of the operations performed by the various components, as illu-
strated in Figure 5. The rVec register implements a 32 bit linear feedback shift register and the lower N/2
bits of it are used to control row swapping in the input crossbar and matcher. The qLen register, contains
the output queue lengths, arranged in sorted order. It has N inputs that are used to either increment or
decrement the stored values. It also has N outputs, each of which controls whether a column swap is re-
quired between one column and the next. The currentIn register specifies which input is currently asso-
ciated with a given row of the matcher array. Similarly, the currentOut register specifies which output is
currently associated with a given column of the matcher array. These signals are maintained by the top-
level controller and are updated whenever rows or columns are swapped.

Given this context, it’s instructive to see how the main elements of the matcher are specified using
VHDL. Let’s start with the combinational logic used to define the matches between inputs and outputs.
 for i in 0 to N-1 loop
 colBusy(i) <= (others => '0'); rowBusy(i) <= (others => '0');
 end loop;

rowBusy(N) <= (others => '0');
for i in 0 to N-1 loop
 for j in 0 to N-1 loop
 if i+j /= N-1 then

 match := dp(i)(j) and (not rowBusy(i)(j)) and (not colBusy(i)(j));
 rowBusy(i+1)(j) <= rowBusy(i)(j) or match;
 colBusy(i)(j+1) <= colBusy(i)(j) or match;
 else

matcherxbIn

mOnOff
N

mTarget
N lgN

mGrant
N

mSendTo
N lgN

currentIn
N lgN

currentOut

xbOut

m
A
ct
iv
e

N
lg
N

m
R
ec
vF
ro
m

N

N
lg
N

O
n
O
ff

N
Ta
rg
et

N
lg
N

G
ra
n
t

N
S
en
d
To

N
lg
N

reg reg

qLen

re
g

re
g plusMinus

N

N

N lg N

recvFrom

active

mPlusMinus

in
O
rd
er

NrVec
state

N

Figure 6. Detailed block diagram

- 11 -

 match := dp(i)(j) and (not rbDiag(i)) and (not cbDiag(i));
 rowBusy(i+1)(j) <= rbDiag(i) or match;
 colBusy(i)(j+1) <= cbDiag(i) or match;
 end if;
 end loop;
end loop;

The colBusy and rowBusy signals are produced and used by successive cells in the matcher array.
Specifically, colBusy(i)(j) is an input to the (i,j) cell in the array and colBusy(i)(j+1) is an output.
Similarly, rowBusy(i)(j) is an input to the (i,j) cell in the array and rowBusy(i+1)(j) is an output. The
match logic is defined in the inner loop. There are two cases, with the first case applying to most of the
cells. In this case, the match variable is high if the data present bit for the (i,j) cell is set and there are no
matches below or to the left of the current cell (as indicated by the colBusy and rowBusy inputs). The
second case applies just to the diagonal cells of the matcher array (top-left to bottom-right). These cells
contain flip flops for the row and column busy signals, to limit the number of stages of logic through
which signals must propagate in a single clock tick. These flip flops are defined by the rbDiag and
cbDiag signals.

For those who are less familiar with VHDL, a brief word about the two kinds of assignment statements
used above. Signal assignments use the left arrow symbol (<=) and such assignments define actual circuit
connections. Variable assignments use the traditional Algol assignment symbol (:=) and are best thought
of as macro definitions, that allow logic specifications to be stated more concisely. Also, note that the ex-
pression (others => '0') is a common idiom in VHDL, that is used to specify that all bits of a multi-
bit signal of unspecified length are '0'.

Next, let’s move onto the logic that generates the active and recvFrom outputs. The signal mAc-
tive(i) is obtained directly from the colBusy signals generated earlier. The generation of the signal
mRecvFrom is a bit more complicated. For each column in the array, its value should be the input corres-
ponding to the matching cell in that column (assuming there is one). In the following code fragment, the
inner loop specifies xRecvFrom as the logical-OR of the values of currentIn(j) for all cells in column i
that correspond to a match. Since there is at most one cell per column that can have a match, xRecvFrom is
the input corresponding to that matching cell.
 for i in 0 to N-1 loop

 xRecvFrom := (others => '0');
 for j in 0 to N-1 loop
 match := dp(i)(j) and (not rowBusy(i)(j)) and (not colBusy(i)(j));
 if match = '1' then
 xRecvFrom := xRecvFrom or currentIn(j);
 end if;
 end loop;

 mActive(i) <= colBusy(i)(N); mRecvFrom(i) <= xRecvFrom;
end loop;

The logic for generating the grant and sendTo outputs is similar.

Now, let's consider the process that responds to operations specified by the top-level controller. The
main part of this process is a large case statement, with a separate case for each state. The case for the
turnOn state is shown below.

when turnOn =>
 for i in 0 to N-1 loop
 for j in 0 to N-1 loop
 if mOnOff(j) = '1' and currentOut(i) = mTarget(j) then
 dp(i)(j) <= '1';
 end if;
 end loop;
 end loop;

- 12 -

The case for the turnOff state is similar. The matcher loads the pipeline registers along the diagonal of
the matcher array at the end of the match1 state.

when match1 =>
 for i in 0 to N-1 loop
 rbDiag(i) <= rowBusy(i)((N-1)-i);
 cbDiag(i) <= colBusy(i)((N-1)-i);
 end loop;

During the swapEven and swapOdd states, the matcher swaps adjacent columns if they are not in the cor-
rect order.

when swapEven =>
 for i in 0 to (N/2)-1 loop
 if inOrder(2*i) = '0' then
 dp(2*i) <= dp(2*i+1); dp(2*i+1) <= dp(2*i);
 end if;
 end loop;
when swapOdd =>
 for i in 1 to (N/2)-1 loop
 if inOrder(2*i-1) = '0' then
 dp(2*i) <= dp(2*i-1); dp(2*i-1) <= dp(2*i);
 end if;
 end loop;

Note that because VHDL specifies circuit connections, not sequential execution, the column swapping
specified by the pair of assignments is a single operation that takes place at one time, so there is no need
for a temporary register in which to store the value, as would be required in a sequential program.

Finally, when in the swapRows state, the matcher does a random exchange of adjacent rows, based on
the bits of the rVec input signal. It then shuffles all the rows. The variable dpSwap represents the interme-
diate values in this two step process.

when swapRows =>
 for i in 0 to N-1 loop
 for j in 0 to (N/2)-1 loop
 if rVec(j) = '0' then
 dpSwap(2*j):= dp(i)(2*j); dpSwap(2*j+1):= dp(i)(2*j+1);
 else
 dpSwap(2*j) := dp(i)(2*j+1); dpSwap(2*j+1) := dp(i)(2*j);
 end if;
 end loop;
 for j in 0 to N-1 loop
 if j < N/2 then
 dp(i)(2*j) <= dpSwap(j);
 else
 dp(i)(2*(j-N/2)+1) <= dpSwap(j);
 end if;
 end loop;
 end loop;

Note that the bulk of the matcher specification is concerned with overhead activities, rather than the es-
sential matching operation. This is also true of the circuitry generated by the specification.

4.4 Functional Simulation
To demonstrate the operation of the circuit we present results of a functional simulation for an eight port
configuration of the ALOOFA scheduler. During the first operational cycle of the controller, the simula-
tion inputs specify the turning on of data present bits for all inputs to output 0. During the second opera-
tional cycle, the simulation inputs specify turning on data present bits for inputs 1..7 to output 1. During
the third operational cycle, the simulation inputs specify turning on data present bits for inputs 2..7 to
output 2, and the pattern continues in this fashion.

- 13 -

Figure 7 shows a snapshot of the simulation during the third operational cycle. The diagram at the
right displays information obtained from the simulation output in a graphical form to facilitate under-
standing. The main array of squares represents the matcher array. The arrows linking parts of the simula-
tion output to the diagram show how the two correspond. Starting at the top, we see that the onOff signal
is 3F during the first tick of the controller's operational cycle and all fields of the target signal are 2;
this specifies the turning on of data present bits for inputs 2..7 to output 2. We also note that the output
queue lengths are incremented for outputs 0 and 1, but also decremented for output 0. The currentIn
signal determines the effective ordering of the rows of the matcher array, while the currentOut signal
determines the column ordering. The state of the matcher array is determined by the dp (data present) bits.
Each pair of hex digits in the dp bits represents one column of the array, so the first pair of digits (FD)
specifies the first column of the array and indicates that all bits in this column are set, except for the
second one from the top (left-to-right ordering in the dp bits corresponds to bottom-to-top ordering in the
graphic). Simillarly, the subsequent pairs of hex digits (FF and 7D) specify the next two columns. In the
graphic, active cells are indicated by a + symbol and those that are selected during the matching process
are indicated by a symbol. The results of the matching of inputs to outputs is reflected in the sendTo
and recvFrom signals, along with the grant and active signals. These are shown in the graphic as a list
of matched pairs.

3
5
7

2
4

1

on:
off:

plusMinus:

6
0

1 0 2 3 4 5 76
1

⊕ +

1 0 0 0 0 0 0

+ ⊕ +
+ + ⊕
+ + +
+ + +

+
+ + +

+ + +

__222222

_+______

1→1, 2→0, 4→2

Figure 7. Sample simulation output

- 14 -

4.5 Circuit Complexity
We evaluated the circuit complexity of the ALOOFA controller by synthesizing the circuit for a Xilinx
Virtex 5 FPGA, with 6 input LUTs (specifically, the XC5VFX30-2 part). The circuit complexity is shown
in the table below, with separate columns shown for the number of Lookup Tables (LUTs) and flip flops
(FFs). We give data for 8×8 and 16×16 circuit configurations and use these to compute an empirical scal-
ing factor.

VHDL
lines

8x8 16x16
scaling
factor

LUTs FFs LUTs FFs LUTs FFs

matcher 160 745 79 2,975 288 4.0 3.6

input crossbar 95 307 64 1,507 256 4.9 4.0

output crossbar 79 240 64 1,053 256 4.4 4.0

top 232 941 363 1,752 786 1.9 2.1

total 614 2,233 570 7,287 1,586 3.3 3.6

We separate results for the matcher, the crossbars and the top level circuit, to clarify the relative contribu-
tions of different parts of the circuit. We include empirical scaling factors at the right and note that (as
expected), the matcher and crossbar components exhibit roughly quadratic scaling, while the top level
circuit exhibits roughly linear scaling. In smaller configurations, the top level circuit dominates the hard-
ware complexity, but contributes a smaller fraction in larger configurations. The matcher is substantially
larger than the input and output crossbars. We note that the core matching operation performed by the
matcher can be implemented with just two LUTs per cell, as can be seen from Figure 1. The actual num-
ber of LUTs is about five times larger than required by the matching operation alone. The remaining
LUTs are used to generate the output signals (sendTo, recvFrom) and to perform the row and column
swapping operations. We also note that that for these (relatively modest) values of N, the overall circuit
complexity grows more slowly than one would expect, based on the asymptotic circuit complexity of
O(N2log N). This is primarily due to to the large role played by the top level controller. Since its complex-
ity is essentially linear in N, it has a relatively large impact when N is small.

It's also worth noting that the FPGA used for these results has 19,200 LUTs and 19,200 flip flops that
can be used to implement circuitry, so even the 16×16 crossbar uses a modest fraction of the available
resources. Moreover, this is a relatively small FPGA. Finally, we note that the circuit has a high ratio of
LUTs to flip flops (more than 4:1 overall, and roughly 10:1 in the matcher). This is mainly a consequence
of the fact that the matcher and crossbars, require relatively few flip flops, relative to combinational cir-
cuitry. Finally, we note that while the specification of the controller is reasonably concise, requiring a
total of 614 lines of VHDL (about 12 pages); the top level circuit accounts for just over a third of the to-
tal, while the matcher accounts for just over one fourth.

4.6 Circuit Performance
To evaluate the performance of the circuit, we performed a complete place-and-route of the 8x8 version
of the ALOOFA controller, with a timing constraint on the clock period. The smallest clock period for
which the automated tools were able to successfully complete the place and route process was 5.7 ns.
Since, a complete operational cycle of the controller takes 7 clock ticks, this translates to an overall cycle
time of 40 ns. This is fast enough for a 50 byte packet at 10 Gb/s. For 10 Gb/s Ethernet, the smallest ef-
fective frame size is about 80 bytes (including the standard preamble and required inter-frame spacing),
so the FPGA implementation of the ALOOFA controller can support a 10 GbE switch with a speedup of

- 15 -

1.6, while processing minimum size packets. It can provide a 2:1 speedup for frame lengths of at least 100
bytes.

Larger versions of the circuit cannot match that performance using FPGA technology. In general, one
would expect that each doubling of the crossbar size would result in a doubling of the minimum clock
period, and hence halving of the operating frequency. So for example, we would expect an FPGA imple-
mentation of a 32x32 controller to have a clock period of about 22.8 ns and a resulting operating frequen-
cy of about 43 MHz. An ASIC implementation can be expected to bring the clock period down by an or-
der of magnitude, enabling an operating frequency of more than 400 MHz. This would support a 2:1
speedup with minimum size packets with a comfortable margin.

There are several ways one can improve performance, further. The results provided above are based on
a fully automated place-and-route, with no explicit floor-planning to guide the tools to the most efficient
layout. Given the highly regular nature of the circuit, it’s likely that significantly better results could be
obtained through careful floor-planning.

There are also higher level changes one might make to improve the design. In particular, for larger cir-
cuit configurations, the introduction of additional pipeline registers could have a big impact on the operat-
ing frequency. The introduction of pipeline registers at the interfaces to the matcher can be expected to
improve the clock frequency in a larger configuration by a factor between 1.5 and 2. This would add an
additional clock tick to the operational cycle, reducing the gain by about 15%. Still, the improvement
would be worthwhile.

Another way to improve the performance is to combine the first two steps of each operational cycle.
This would increase the number of pins required by N(2+log2N), but would reduce the number of ticks
per cycle from 7 to 6. One could also reduce the number of clock ticks used for row and column swap-
ping. For example, if row swapping were not done on every operational cycle, we could improve the op-
erational performance, at the cost of a reduction in short-term fairness. One could also do only one col-
umn swap each cycle, alternating between the odd and even swap steps, although this could have an im-
pact on the scheduling performance. Combining all such optimizations, one might be able to reduce the
number of clock ticks per cycle from 7 to 4, yielding an improvement of 75% in operating frequency.

5. SCHEDULING PERFORMANCE
Since the late nineties, it has been known that certain crossbar schedulers could provide strong perfor-
mance guarantees when used with a speedup of 2 or more [3,6]. While it has generally been assumed that
a non-trivial speedup was necessary to achieve such guarantees, this has not been proven in any definitive
way. In this section, we introduce a natural lower bound on the performance of any crossbar scheduler
and use it to show that certain traffic patterns require a non-trivial speedup, in order to achieve work-
conserving performance. We then compare the performance of LOOFA and ALOOFA to this lower
bound and demonstrate that both closely match the lower bound and that their performance is nearly iden-
tical.

We define a traffic pattern to be a schedule of cell arrivals at the inputs of a crossbar. Each arriving
cell has a designated output, and the job of the crossbar scheduler is to decide when arriving cells should
be transferred from inputs to outputs. We can define two variants of the crossbar scheduling problem. In
the offline scheduling problem, the entire traffic pattern is known in advance and the scheduler can use its
knowledge of the complete traffic pattern in making scheduling decisions. In the online scheduling prob-
lem, the scheduler must make scheduling decisions as cells arrive, with no advance knowledge of the
complete traffic pattern. In practice, we are most interested in online scheduling, but the offline problem
is useful in establishing broadly applicable lower bounds.

We assume a synchronous switch model in which cells arrive and depart at integer times i ≥0 and that
for a switch with a speedup of S, cells are transferred at times i/S for integers i ≥0; we also assume that a
cell that arrives at time t, can be transferred through the switch at time t if t is an integer multiple of 1/S.

- 16 -

However, it cannot be forwarded at the same time it is transferred though the crossbar. This implies that
every cell is delayed by at least one time step. For any traffic pattern, P, we let Pt be the subset that in-
cludes cells that arrive at times ≤ t. Any such subset can be viewed as defining a bipartite graph on the
crossbar’s inputs and outputs. We note that the number of cells that can be transferred through a crossbar
at time t is bounded above by the size of a maximum size matching on the graph defined by Pt. This ob-
servation is the basis for our lower bound. If n is the number of cells in a traffic pattern P and we define
mt to be the size of a maximum size matching on the graph defined by Pt, then a schedule that transfers all
cells through the crossbar by time t must satisfy the following condition.

nm
tSi

Si ≥∑
≤≤0

/

since the schedule cannot finish until all cells are transferred. The smallest value of t that satisfies this
criterion is thus a lower bound on the time to transfer all cells through the crossbar, and the next larger
integer is a lower bound on the time to both transfer and forward all cells in the schedule.

We can apply our lower bound to a traffic pattern proposed in [16] as an effective stress test for cross-
bar schedulers. This provides concrete evidence that this traffic pattern really is inherently challenging.
The traffic pattern is defined on n inputs and 2n–1 outputs. Let 0≤ i <n and 0≤ t <n be integers. At time t,
all inputs i≥t receive a cell for output t, while all inputs i<t receive a cell for output n+i. This is illustrated
in Figure 8 for the case of n=4 (inputs and outputs are assumed to be numbered from 0, starting at the
top). Note that in this case, a crossbar with a speedup of 1 can transfer only one cell at time 0 and three
cells at time 1. After that, it can transfer at most four cells at a time. Since a total of 16 cells are received,
it’s not possible to transfer and forward all cells until time 5, while an ideal output-queued switch could
transfer and forward all cells by time 4. Note that this is true no matter what scheduling algorithm is used.
We define the excess time used by a scheduler, relative to the completion time of an ideal output-queued
switch as the overshoot of the schedule. So, for this traffic pattern, the best possible overshoot is 25%.

Lower bounds can be computed for the stress test traffic pattern for any speedup. Figure 9 shows how
the lower bound varies with speedup for stress test traffic patterns with n=64. The overshoot drops as the
speedup increases, and is zero for speedups larger than about 1.33. We observe that the completion times
for the LOOFA and ALOOFA schedulers are generally within 25% of the completion time lower bound.
There is a significant gap between the lower bound and the performance of LOOFA and ALOOFA; this
gap defines the potential space for improvement of either the lower bound or the schedulers. We observe
that there is very little difference between the performance of LOOFA and ALOOFA, and that in fact,
ALOOFA performs slightly better than LOOFA in some cases. This confirms the intuition that the ap-
proximate sorting does not have a significant impact on the performance.

Figure 9 shows the performance of LOOFA and ALOOFA using another performance metric, in addi-
tion to the overshoot. The miss rate for a schedule is defined to be the fraction of times that an output is

Figure 8. Stress test traffic pattern for n=4

0

0.1

0.2

0.3

0.4

0.5

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

o
v
e
rs
h
o
ot
,
m
is
s
ra
te

speedup

ALOOFA overshoot

LOOFA overshoot

ALOOFA
miss rate

overshoot
lower bound

LOOFA
miss rate

Figure 9. Scheduler Performance

- 17 -

unable to send a cell, even when there is a cell in the system for that output. This provides a measure of
the fraction of a system’s output capacity that is effectively lost due to less than ideal scheduling perfor-
mance. We observe that LOOFA and ALOOFA have nearly identical miss rates and that for speedups
larger than about 1.4, the amount of lost output capacity is less than 5%.

We note that while the stress test pattern does require a non-trivial speedup, it may well be the case
that other traffic patterns have even larger intrinsic overshoots. We have not yet found “more stressful”
traffic patterns, but note that lower bounds, such as the one described here, provide a useful tool for eva-
luating candidates for the title of most challenging traffic pattern.

6. CLOSING REMARKS
There are several useful directions for extending the work described here. One is to perform a more com-
prehensive study of the hardware performance of the ALOOFA scheduler, with a focus on ASIC synthe-
sis of larger configurations. In this context, it would be worthwhile exploring alternate design choices,
such as the impact of additional pipeline stages and/or a reduction in row/column swapping overhead.
There may also be alternate strategies for approximate sorting that would perform better than the simple
odd-even strategy used here.

It would also be interesting to further explore the worst-case scheduling performance of ALOOFA. We
note that an arbitrary list of N values can be sorted in N/2 pairs of odd-even sorting steps. This suggests
the while the output ordering provided by ALOOFA may not always match the exact output ordering,
there may just be a finite “lag” that would still allow a slightly weaker form of worst-case performance
guarantee. Specifically, one might conjecture that ALOOFA scheduler never fails to forward a cell for an
output, so long as there is no cell in the system for that output that has been present for more than N/2
time units. An approximate work-conservation result of this sort would provide a stronger case for the
application of ALOOFA in real systems.

It’s also interesting to note that the structure of the ALOOFA scheduler can be adapted for use with
any other crossbar scheduler that matches inputs to outputs based on a single, consistent ordering of the
outputs. The ordering may depend on other parameters, in addition to the output queue length, or could be
based on completely different criteria. This is because the matching array allows fast and efficient compu-
tation of maximal matchings, and requires only that the matching proceed from the bottom left to the top
right of the array.

REFERENCES

[1] Anderson, T., S. Owicki., J. Saxe and C. Thacker. “High speed switch scheduling for local area networks,”

ACM Trans. on Computer Systems, 11/93.
[2] Attiya, H., D. Hay and I. Keslassy. “Packet-Mode Emulation of Output-Queued Switches,” Proc. of ACM

SPAA, 2006.
[3] Chuang, S.-T. A. Goel, N. McKeown, B. Prabhakar “Matching output queueing with a combined input output

queued switch,” IEEE Journal on Selected Areas in Communications, 12/99.
[4] Chuang, Shang-Tse, Sundar Iyer, Nick McKeown. “Practical Algorithms for Performance Guarantees in

Buffered Crossbars,” Proceedings of IEEE INFOCOM, 3/05.
[5] Iyer, S., R. Zhang, and N. McKeown, “Routers with a Single Stage of Buffering”, ACM SIGCOMM ’02,

Pittsburgh, USA, Sep. 2002.
[6] Krishna, P., N. Patel, A. Charny and R. Simcoe. “On the speedup required for work-conserving crossbar

switches,” IEEE J. Selected Areas of Communications, 6/99.
[7] Katevenis, M., G. Passas, D. Simos, I. Papaefstathiou, N. Chrysos. “Variable Packet Size Buffered Crossbar

(CICQ) Switches,” Proceedings IEEE International Conference on Communications, pp. 1090-1096, 6/2004.
[8] Katevenis, M., G. Passas. “Variable-Size Multipacket Segments in Buffered Crossbar (CICQ) Architectures,”

Proceedings IEEE International Conference on Communications, 5/2005.
[9] Leonardi, E., M. Mellia, F. Neri, and M.A. Marsan, “On the stability of input-queued switches with speed-up,”

IEEE/ACM Transactions on Networking, Vol. 9, No. 1, pp. 104–118, February 2001.

- 18 -

[10] Magill, B., C. Rohrs, R. Stevenson, “Output-Queued Switch Emulation by Fabrics With Limited Memory,”
IEEE Journal on Selected Areas in Communications, pp. 606–615, 5/2003.

[11] Marsan, M. A., A. Bianco, P. Giaccone, E. Leonardi and F. Neri. “Packet-Mode Scheduling in Input-Queued
Cell-Based Switches,” ACM/IEEE Transactions on Networking, 2002.

[12] McKeown, Nick. “iSLIP: a scheduling algorithm for input-queued switches,” IEEE Transactions on
Networking, 4/99.

[13] McKeown, N., A. Mekkittikul, V. Anantharam, and J. Walrand. “Achieving 100% Throughput in an Input-
Queued Switch,” IEEE Transactions on Communications, Vol. 47, No. 8, Aug. 1999.

[14] Mhamdi, L., Mounir Hamdi. “MCBF: A High-Performance Scheduling Algorithm for Buffered Crossbar
Switches,” IEEE Communications Letters, 2003.

[15] Nojima, S., E. Tsutsui, H. Fukuda, M. Hashimoto. “Integrated Services Packet Network Using Bus Matrix
Switch”, IEEE Journal on Selected Areas of Communications, 10/87.

[16] Pappu, Prashanth and Jonathan Turner. “Stress-Resistant Scheduling Algorithms for CIOQ Switches,”
Proceedings of ICNP, November 2003.

[17] Rodeheffer, Thomas L. and James B. Saxe. “An Efficient Matching Algorithm for a High-Throughput, Low-
Latency Data Switch .” Compaq Systems Research Center, Research Report 162, 11/5/98.

[18] Rojas-Cessa, E. Oki, Z. Jing, and H. J. Chao, “CIXB-1: Combined Input-One-cell-Crosspoint Buffered
Switch,” IEEE Workshop on High Performance Switching and Routing, Dallas, TX, July 2001.

[19] Stevens, D. and H. Zhang. ``Implementing Distributed Packet Fair Queueing in a Scalable Switch
Architecture,'' Proceedings of Infocom, 1998.

[20] Turner, J. “Strong Performance Guarantees for Asynchronous Buffered Crossbar Schedulers,” ACM/IEEE
Transacitions on Networking, 8/2009.

