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Abstract 
 

The Least Occupied Output First (LOOFA) scheduler is one of several unbuffered crossbar 
schedulers that provides strong performance guarantees when operated with a speedup of 2 
or more. Because LOOFA requires the computation of a maximal matching, it has been 
considered too slow for use in systems with link rates of 10 Gb/s or more. This paper stu-
dies an approximate variant of LOOFA described briefly in [16]. We introduce a general 
family of schedulers that allows for partial sorting and that includes the LOOFA scheduler 
as a special case. We show that all schedulers in this class are work-conserving and use this 
to provide insight into the operation of the Approximate LOOFA scheduler and a stronger 
motivation for its use. We provide a detailed design of the ALOOFA scheduler in order to 
evaluate its implementation complexity and performance characteristics. We also introduce 
a simple, natural lower bound on the performance of crossbar schedulers and use it to show 
that a previously proposed “stress test” traffic pattern is in fact difficult to schedule well. 
Our result implies that non-trivial speedups are required for ideal worst-case scheduling 
performance, something that has been generally assumed to be true, but never conclusively 
demonstrated. We also compare the performance of both LOOFA variants to our lower 
bound on stress test traffic and observe that for speedups between 1 and 2, the performance 
of both variants stays within 25% of the lower bound, and that the performance characteris-
tics of the two variants are essentially indistinguishable. 

 

1. INTRODUCTION 
The Least Occupied Output First (LOOFA) crossbar scheduling algorithm [6] is one of a number of such 
algorithms that offers strong performance guarantees [2,4,5,10,17,20]. In particular, when used with cross-
bars with a speedup of 2 or more, it guarantees work-conserving behavior, ensuring that none of the out-
put link capacity is lost due to less-than-ideal scheduling. The LOOFA scheduler also provides better 
fairness properties than other schedulers with similar worst-case performance, when operated with smaller 
speedups. Unfortunately, schedulers for unbuffered crossbars with strong performance guarantees have 
yet to see much practical application, as they are difficult to implement in high performance systems. The 
key difficulty has been the requirement that the scheduler compute maximal matchings, or in some cases, 
stable matchings, in order to provide the performance guarantee. 

The Approximate LOOFA (ALOOFA) scheduler was introduced briefly in [16], as a practical variant 
of the LOOFA scheduler. The authors argued that ALOOFA could be implemented efficiently in hard-
ware and provided performance that was essentially indistinguishable from LOOFA. One of the intriguing 
aspects of the ALOOFA scheduler is that it does not compromise in the matching computation, but in the 
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sorting operation needed to maintain an ordered list of output queue lengths. The authors argue that since 
queue lengths change slowly, their order can be adequately maintained by applying a single odd-even 
sorting step after each operational cycle.  

This paper provides a more detailed examination of the ALOOFA scheduler, in order to determine if 
ALOOFA is in fact a practical alternative for high performance crossbars. In order to gain greater insight 
into ALOOFA, we define a general class of scheduling algorithms that allows for partial sorting and show 
that all schedulers in this class are work-conserving when operated with speedups of 2. This class in-
cludes LOOFA, but not ALOOFA. Still, our analysis does provide a stronger justification for the use of 
partial sorting in ALOOFA and allows us to more clearly identify the important differences between these 
two scheduling algorithms. We describe a complete hardware implementation of ALOOFA in order to 
more fully evaluate its hardware complexity and performance. This reveals that while the essential asser-
tion in [16] remains valid, the complexity and performance of the ALOOFA scheduler is determined 
largely by the circuitry needed to support various overhead functions, not the central matching operation. 
We also introduce a non-trivial lower bound on the performance of unbuffered crossbar schedulers and 
show that a so-called “stress test” traffic pattern introduced in [16] is in fact challenging, when it comes to 
worst-case performance. Specifically, we show that for this traffic pattern, no crossbar scheduler (includ-
ing “offline” schedulers that have advance knowledge of the complete traffic pattern) can match the per-
formance of an ideal output-queued switch unless operated with a non-trivial speedup.  This confirms a 
widely believed, but previously unverified conjecture. Finally, we study the performance of both LOOFA 
and ALOOFA on stress test patterns and show that they typically complete the transfer of all cells through 
the crossbar in a time that is within 25% of that implied by the lower bound. 

The performance of crossbar schedulers for packet switches has been studied extensively since the ear-
ly 1990s. Anderson, et al described the Parallel Iterative Matching (PIM) method used in the DEC AN2 
switch in 1993 [1]. This was the inspiration for a number of subsequent schedulers, including the popular 
i-SLIP method of McKeown [12] in 1999. The performance studies of this period were largely based on 
simulation, and typically focused on traffic patterns that were relatively benign in nature. The late nineties 
saw the appearance of the first worst-case results that provided strong performance guarantees, indepen-
dent of the incident traffic. The simplest such results established conditions under which a crossbar sche-
duler was work-conserving, meaning that it never failed to forward a cell to an output, if there was a cell 
for that output, anywhere in the system [6]. Other papers established conditions under which a scheduler 
was not only work-conserving but forwarded cells in the order they were received, regardless of the input 
on which they arrived [17]. In a seminal paper, Chuang et al, showed that certain schedulers can exactly 
emulate an output-queued switch that uses any one of a wide class of queueing disciplines [3]. All of these 
results require that the crossbar be operated with a speedup of 2 relative to the external links, and require 
the computation of either a maximal matching or a stable matching. This requirement makes them diffi-
cult to implement in high performance systems and has limited their practical application. 

More recently, there has been a growing interest in buffered crossbars that are capable of storing a 
small number of cells or packets at each of a crossbar’s crosspoints [5,7,8,10,14,15,18]. While this signifi-
cantly increases the circuit complexity of the crossbar, ongoing improvements in integrated circuit density 
make it a practical alternative. What makes buffered crossbars attractive is the fact that they are easier to 
control, making it possible to obtain good worst-case performance guarantees using relatively simple 
scheduling methods [3]. Buffered crossbars also make it possible for inputs and outputs to operate asyn-
chronously, allowing direct switching of variable length packets. References [2,20] shows how worst-case 
performance results developed for cell-based switches can be extended to buffered crossbars that switch 
variable length packets. 

There is a separate category of crossbar performance results that focuses on performance for random 
traffic that is admissible, meaning that the incoming traffic does not exceed the capacity of any outgoing 
link for an extended period of time [9,11,13]. Results of this form are often referred to as 100% through-
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put results, or stability results. These results typically do not require a speedup, but also fail to provide the 
kind of strong guarantee that the worst-case results provide. Given the highly variable and unpredictable 
nature of internet traffic, schedulers that can provide worst-case guarantees seem preferable, so long as 
their cost is not exorbitant. 

In Section 2, we introduce a family of crossbar schedulers that generalize the LOOFA scheduler and 
show that all schedulers in the class are work-conserving. Section 3, we provide a complete description of 
the ALOOFA scheduler and explain the basic characteristics that make it an attractive candidate for high 
performance crossbars. In Section 4, we describe a specific implementation of the ALOOFA scheduler, 
and use it to evaluate the circuit complexity and performance. In Section 5, we present bounds on the 
scheduling performance of crossbar schedulers and examine how LOOFA and ALOOFA perform, rela-
tive to these bounds. We conclude in Section 6 with some closing remarks. 

2. A FAMILY OF WORK-CONSERVING CROSSBAR SCHEDULERS 
We are concerned with scheduling the transfer of fixed length cells from inputs to outputs of a crossbar 
switch with no internal buffering. To enable good worst-case performance, crossbars can be operated with 
a speedup S that supports a peak cell transfer rate through the crossbar that is S times larger than the rate 
at which cells arrive on the inputs. For typical values of S, this means that queueing is required at both 
inputs and outputs to the crossbar. The systems we consider are equipped with Virtual Output Queues 
(VOQ) at each input and have a single FIFO queue at each input. Specifically, each input i maintains a 
VOQ Vij containing all the cells it has that are to be transferred to output j, and each output j maintains a 
queue Qj of cells waiting to be sent on its outgoing link. Since a crossbar can accept at most one cell at a 
time from each input, and deliver at most one cell at a time to each output, there is some system-level 
coordination required to determine which cells are transferred when. This is done using a crossbar con-
troller that implements a scheduling algorithm. We say that a scheduling algorithm is work-conserving if 
it does not allow any output link capacity to be wasted. More precisely, work-conservation implies that 
whenever there is a cell for output j in any VOQ, some cell is being sent on output j. 

As its name suggests, the LOOFA scheduling algorithm matches inputs to outputs, while giving priori-
ty to those outputs with the fewest cells in their out-going queues. This is a natural greedy strategy, if our 
objective is to keep output links busy whenever possible. We can view the LOOFA scheduler as operating 
iteratively, processing the outputs in non-decreasing order of their queue lengths. When an output is con-
sidered, it is matched with an input that has not yet been matched to any output, and that has a cell to 
transfer to the current output. When multiple inputs are available to match a given output, a variety of 
selection criteria can be applied. The worst-case performance guarantee for systems with speedups of 2 or 
more, is independent of the criteria used to select inputs. However, the input selection criteria can become 
important for systems operated with smaller speedup; in these cases, criteria that seek to provide fairness 
among the inputs are natural choices. 

We describe a family of Generalized LOOFA (GL) schedulers and show that any GL scheduler is 
work-conserving when operated with a speedup of 2. Although, the ALOOFA scheduler is not a GL 
scheduler, our analysis provides some interesting insights into its operation. For clarity, we view a cross-
bar as operating in discrete phases. During an arrival phase cells are received at the inputs and placed in 
VOQs. During a transfer phase, cells are transferred through the crossbar from VOQs to output queues. 
During a departure phase, cells are removed from output queues and sent on the outgoing links. Systems 
with speedup of 2 have two transfer phases in each operational cycle. We assume that the transfer phases 
occur between the arrival and departure phases. 

The GL schedulers all maintain a list of active VOQs for each input. When a VOQ Vij becomes active 
(that is, transitions from empty to non-empty), it is inserted at some position in the list for input i. When a 
VOQ becomes inactive, it is removed from its input’s list. A GL scheduler inserts a newly active VOQ Vij 
in the list using the following insertion policy. 
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Insert Vij either at the beginning of the list or immediately following any Vih for which the 
number of cells in Qh is less than or equal to the number in Qj.  

A GL scheduler selects VOQs from which to transfer cells through the crossbar by performing the follow-
ing VOQ selection step for each input i. 

Select the first Vij in the VOQ list at input i that does not conflict with any VOQ selected 
in an earlier step. 

Here, a conflicting VOQ is simply one that contains cells for the same output. A GL scheduler may also 
re-order the VOQs in its lists by performing the following compare-and-swap operation. 

Select any two active VOQs Vih and Vij for which Vih immediately precedes Vij in the 
scheduling list at input i. If the number of cells in Qj is less than the number in Qh, ex-
change the positions of Vih and Vij in the list. 

Note that there is no requirement that a GL scheduler perform any compare-and-swaps. Also note that the 
LOOFA scheduler can be viewed as the special case of the GL scheduler in which we precede the VOQ 
selection step at input i with enough compare-and-swap operations to fully sort the list according to the 
number of cells in the output queues. 

To facilitate the analysis of the GL schedulers, we introduce some notation. First, let vij be the number 
of cells in Vij and let qj be the number in Qj. Let pij be vij plus the number of cells in all VOQs that come 
before Vij in the VOQ list at input i. Define slackij=qj – pij. Note that anytime output j fails to send a cell 
while Vij contains a cell, slackij must be less than zero. Consequently, we can show that a scheduler is 
work-conserving by establishing that slackij cannot be negative at the start of a departure phase. The fol-
lowing lemmas enable us to do that. 

Lemma 1. If Vij is active immediately before and after a transfer phase, then slackij increases by at least 1 
during the transfer phase. 

proof. If Vij or one of the VOQs that comes before Vij in the input list at input i is selected during the 
transfer phase then pij is reduced by 1. If neither Vij nor one of the VOQs that precedes it is selected, then 
some other input must transfer a cell to output j during the transfer phase, causing qj to increase by 1. In 
either case, slackij increases by 1. ■ 

Next, let’s consider the effect of compare-and-swap operations.  

Lemma 2. A compare-and-swap operation that exchanges the positions of VOQs Vih and Vij increases the 
value of min{slackih, slackij} by at least 1. 

proof. Assume that Vih comes before Vij in the list at input i and note qh>qj. Also note that swapping Vih 
and Vij reduces pij and hence increases slackij. A swap does increase pih (hence reducing slackih), but the 
new value of pih is the same as the original value of pij, and since qh>qj, the new value of slackih is larger 
than the old value of slackij. Hence the new values of both slackih and slackij are at least 1 larger than the 
original value of slackij, which is at least as large as the original value of min{slackih, slackij}. ■ 

If we let minSlacki=minj slackij, Lemma 2 allows us to conclude that a compare-and-swap cannot cause 
minSlacki to decrease and consequently, a whole series of compare-and-swaps can produce no net de-
crease in minSlacki. Lemma 1 implies that minSlacki increases by 1 during each transfer phase. Also note 
that a departure phase causes minSlacki to decrease by at most 1. These observations lead to our next 
lemma. 

Lemma 3. In a crossbar with a speedup of 2 and a GL scheduler, if any VOQ is active at input i just before 
a departure phase, then minSlacki ≥1. 
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proof. The proof is by induction on the time step t. Note that when t=0, all VOQs are empty and so the 
claim is trivially satisfied. Assume then that the claim is true at all time steps that precede t. This implies 
that if there are any active VOQs at input i at the start of time step t, then minSlacki ≥0. 

If no new VOQ becomes active during the arrival phase of step t, then minSlacki can decrease by at 
most 1 during the arrival phase and hence, minSlacki ≥ –1 right after the arrival phase (assuming some 
VOQ is active). So assume that some Vij became active during the arrival phase of time step t. If Vij was 
inserted at the front of the VOQ list at input i then immediately after the arrival phase, we have slackij ≥–1 
and hence, minSlacki ≥ –1. Now suppose that Vij was inserted immediately after Vih. Since minSlacki ≥0 
just before the arrival phase, slackih ≥0 also. Since, Vij was inserted after Vih, slackih ≥0 after the arrival 
phase as well. Since qh≤qj (by the GL insertion policy) and vij=1, slackij ≥slackih –1 following the arrival 
phase, implying that minSlacki ≥ –1. 

So, in all cases, minSlacki ≥ –1 after the arrival phase in step t or there is no active VOQ. Since each 
of the two transfer phases in step t increases minSlacki by 1 and any compare-and-swaps performed by the 
scheduler do not decrease minSlacki, we have minSlacki ≥1 before the departure phase in step t or there are 
no active VOQs. ■ 

Since, minSlacki ≥1 before any departure phase for which input i has active VOQs, slackij ≥1 for all 
active VOQs. This yields the work-conservation result stated in the following theorem. 

Theorem 1. All GL schedulers are work-conserving. 

It’s interesting to note that no compare-and-swap operations are required for work-conservation. 
Lemma 2 shows that they can’t do any harm, but they are not necessary. The only thing that is really es-
sential is the insertion policy. The LOOFA scheduler effectively follows this insertion policy, but takes 
the additional step of keeping the VOQs sorted by output occupancy. Because LOOFA maintains a fully 
sorted order, the VOQ lists at all inputs have a consistent ordering, although different inputs may have 
different sets of active VOQs. This means that a LOOFA scheduler can maintain a single list of outputs, 
rather than a separate list for each input. 

Because LOOFA can use a single list when making scheduling decisions, it’s possible to perform the 
required matching of inputs to outputs using a simple and fairly fast circuit  and this was one of the key 
motivations for the ALOOFA scheduler described in [16]. However, in ALOOFA, the list is only approx-
imately ordered. Specifically, the ALOOFA scheduler performs a prescribed set of compare-and-swap 
operations that make it “more sorted” but not fully sorted. It limits the number of compare-and-swaps 
done in order to enable high speed operation. Now, based on our earlier analysis, one might jump to the 
conclusion that the approximate sorting done by ALOOFA does not prevent us from achieving work-
conservation. However, it does. ALOOFA is not a GL scheduler, because it effectively violates the GL 
insertion policy. When a VOQ Vij becomes active in ALOOFA, its output is not repositioned in the single 
output list. So, if output j’s immediate predecessor in the list has more cells in its output queue than out-
put j does, we have a violation of the insertion policy. Such violations tend to get quickly “repaired” by 
the compare-and-swap operations done by ALOOFA, but they remain violations. 

Hence, we cannot conclude that ALOOFA is work-conserving, and indeed it’s easy to find traffic pat-
terns that demonstrate that it’s not work-conserving. Still, it is tantalizingly close, and its practical advan-
tages make it a worthwhile option in real systems, which are often operated with a speedup substantially 
smaller than the 2× needed for worst-case performance guarantees anyway. 

3. APPROXIMATE LOOFA 
Here, we review the approximate LOOFA crossbar scheduler, first introduced in [16] and fill in certain 
details that were just sketched in the original paper. However, before describing ALOOFA, we need to 
describe the LOOFA scheduler on which it is based. As its name implies, the LOOFA scheduling algo-
rithm matches inputs to outputs, while giving priority to those outputs with the fewest cells in their out-
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going queues. This is a natural greedy strategy, if our objective is to keep output links busy whenever 
possible. We can view the LOOFA scheduler as operating iteratively, processing the outputs in non-
decreasing order of their queue lengths. When an output is considered, it is matched with an input that has 
not yet been matched to any output, and that has a cell to transfer to the current output. When multiple 
inputs are available to match a given output, a variety of selection criteria can be applied. The worst-case 
performance guarantee for systems with speedups of 2 or more, is independent of the criteria used to se-
lect inputs. However, the input selection criteria can become important for systems operated with smaller 
speedup; in these cases, criteria that seek to provide fairness among the inputs are natural choices. 

The ALOOFA scheduler was inspired by the observation that the matching required for LOOFA could 
be implemented efficiently in hardware by a relatively simple N×N array of circuit elements. The key idea 
is illustrated in Figure 1. The left-most part of the figure shows a 6×6 matcher array. Each element of the 
matcher array corresponds to an input-output pair, and stores one bit of information, indicating whether or 
not the given input has cells to send to the given output. In the figure, input-output pairs with cells wait-
ing to pass through the crossbar are indicated by squares within the matcher array cells. So for example, 
input e has cells to send to outputs b and d. 

Note that below the matcher array, the output queue lengths are shown. These are maintained in sorted 
order with the shortest queue lengths on the left. The output labels indicate which output is associated 
with a given queue length. So for example, output b has 3 cells, while output f has 4. The matcher array 
attempts to match inputs to outputs by processing cells from left-to-right and from bottom-to-top. A given 
cell can be matched so long as there is no other matched cell to its left in the same row or below it in the 
same column. 

 The center portion of the figure illustrates such a match. The match from input b to output a, near the 
lower left of the array, eliminates from contention any other matches in the first column from the left and 
the second row from the bottom. The other dark squares in the diagram indicate other matches. These 
matches can be found using the simple combinational circuit shown in the right portion of the figure. This 
circuit is repeated for every cell, with the D flip flop being set to a 1 if (and only if) that cell is active, 
meaning that its input has one or more cells for its output. The right-hand row busy signal is high if either 
the left-hand signal is asserted, or if the cell is active and the incoming column busy signal is low. Simi-
larly, for the the outgoing column busy signal. Since these signals always flow up and to the right, the 
time required to find a matching is about 2n gate delays. For a modern ASIC process with gate delays of 
under 50 ps, a 32 port matcher circuit requires less than 2 ns to find a maximal matching. 

To maintain the outputs in approximate sorted order, the ALOOFA controller performs a single odd-
even sorting step as part of each operational cycle. Before the swap is performed, the queue lengths are 
adjusted to reflect transfers of cells into or out of an output queue (note that queue lengths can only 
change by 1). Following the queue length adjustment, the queue lengths for the odd-even column pairs 
are compared, and if out-of-order, they are swapped. Note that the columns of the matcher array are 
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Figure 1. Approximate LOOFA matcher 
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swapped along with the queue lengths. Next, the even-odd column pairs are compared, and swapped if 
necessary.  

In the example shown in Figure 2, the odd-even swap succeeds in restoring a sorted order. This is not 
guaranteed to occur in all cases, but it does occur often, since queue lengths change so little from one step 
to the next. Even when it does not occur, queue lengths typically do not get very far out of order. Note 
that it is only the sorting step that makes ALOOFA approximate. So long as outputs are sorted, the match-
ing produced by ALOOFA is exactly the matching prescribed by LOOFA. Indeed, if the ALOOFA sche-
duler performed N/2 sorting steps, it could guarantee that the outputs remained in sorted order, but this 
would make it difficult to achieve a high performance implementation. 

Note that as presented so far, the ALOOFA matcher gives top priority to the input at the bottom row of 
the array. To avoid giving some inputs a systematic advantage over other inputs, we can re-order the rows 
of the array so as to avoid favoring any inputs over others. Reference [16] suggests doing this by applying 
a random shuffling of the rows. This is illustrated in Figure 3. In this scheme, adjacent rows of the array 
are randomly exchanged, then all are passed through a perfect-shuffle pattern. This can be done after 
every operational step to ensure a high degree of input fairness. An alternative to random shuffling is to 
simply rotate the rows. While this is simpler, it can still result in significant unfairness; if we applied row 
rotation to our example matcher, input a would still have priority over input b for five out of every six 
operational cycles. 

The shuffling of the rows and columns of the matcher array creates a new issue. Since the input and 
output signals to the crossbar controller appear on pins at fixed positions on the controller chip, we need 
some way to maintain the connection between these pins and the shifting rows and columns of the match-
er array. This can be handled by adding input and output crossbars, that maintain connections between 
fixed IO pins and dynamically changing matcher rows and columns. 

In Figure 4. the filled in crosspoints are “closed” indicating a connection between the corresponding 
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row and column. By swapping the rows of the input crossbar along with the rows of the matcher, we 
maintain the correct relationship between the IO pins and the matcher rows. Similarly, by swapping the 
columns of the output crossbar along with the columns of the matcher, we maintain the correct relation-
ship between the matcher columns and the output pins. 

4. DETAILED DESIGN 
Reference [16] provides a good case for ALOOFA as a practical crossbar scheduler, but provides too little 
detail to enable a serious evaluation. A complete crossbar scheduler must interface with input and output 
line cards, and perform all the individual steps required by the algorithm in an appropriate sequence. The 
handling of these details can have significant impact on the circuit complexity and the achievable perfor-
mance. In this section, we describe an actual implementation of the ALOOFA crossbar scheduler. This 
design has been fully specified in VHDL, and synthesized for implementation on a Xilinx Virtex 5 
FPGA. We describe the complexity, performance and scaling characteristics of the synthesized circuit. 

4.1 Input and Output Interfaces 
The controller has an input-side interface, which provides signals used to communication with input line 
cards in a router or switch, and an output-side interface, providing signals for communication with output 
line cards. The input-side interface includes the following signals. 

• onOff - This is an N bit signal used to turn on turn on and off the data present bits in the matcher ar-
ray of the crossbar controller. Specifically, during the first clock tick of the controller's operational 
cycle, onOff(i) is asserted to indicate that input i has cells for the output specified by target(i), 
so the matcher's data present bit indicating the presence of traffic from input i to output target(i) 
should be set. During the second clock tick of the controller's operational cycle, onOff(i) is asserted 
to indicate that it no longer has cells for the output specified by target(i), so the matcher's data 
present bit indicating the presence of traffic from input i to output target(i) should be cleared. 
Note that for each input, there is at most one cell arrival and one cell departure per operational cycle, 
so most of the data present bits in the matcher remain the same from one cycle to the next. 

• target - This is an N word signal, where each word specifies a crossbar output. Its use was de-
scribed in the previous paragraph. 

• grant - This is an N bit signal; grant(i) is asserted if input i has been selected to send a cell.  

• sendTo - This is an N word signal; when grant(i) is asserted, sendTo(i) identifies the output 
that input i should send a cell to. 
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Figure 4. Matcher with IO crossbars 
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The output interface includes the following signals. 

• plusMinus – This is an N bit signal; plusMinus(j) is asserted to indicate that the queue length 
for output j should be increased or decreased by 1. 

• active – This is an N bit signal; active(j) is asserted if output j has been selected to receive a 
cell. 

• recvFrom – This is an N word signal; if active(j) is asserted, recvFrom(j) identifies the input 
that will send a cell to output j. 

We note that other interface definitions are certainly possible, and that the choice of interface can have a 
significant effect on both circuit complexity and performance. We discuss some of these alternatives be-
low.  

4.2 Operational Cycle 
The ALOOFA scheduler operates on a periodic schedule extending over seven clock periods, as shown in 
Figure 5. The first two clock periods are used for receiving data from the input and output line cards. Spe-
cifically, on the rising edge of clock tick 0, the input line cards signal which matcher cells should “turn 
on” (if any) and during clock tick 1, they signal which matcher cells should turn off. Concurrently, the 
output line cards signal which queue lengths should be increased by one, and which should be decreased 
by one.  

The next two clock ticks are used to match inputs to outputs. Two clock ticks are allocated to the 
matching to allow time for signals to propagate through the complete matching array. There are two ap-
proaches one can take to implementing this. One approach is to allow the signals to simply propagate 
through the matcher over two cycles and use the output signals from matcher at the end of the second 
clock cycle. Implementing this approach in the context of modern CAD tools suites, requires the explicit 
identification of so-called multi-cycle circuit paths to inform circuit synthesis tools that these paths can 
tolerate larger than normal circuit delays. It turns out that this is a relatively tedious manual process, in 
most CAD tool suites. Consequently, we have adopted the common practice of introducing a bank of 
pipeline registers to explicitly break the combinational circuit paths into two parts that are handled during 
different clock ticks. This allows the CAD tools to treat all circuit paths in a uniform way. In the case of 
the matcher, the pipeline registers are positioned along the top-left to bottom-right diagonal of the match-
ing array. 

Following the matching process, an odd-even sorting step is performed over two clock ticks. After 
this, rows are swapped randomly, using the random exchange and shuffle procedure described earlier. 
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start

state idle match2match1turnOffturnOn swapRowsswapEvenswapOdd turnOn
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target
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Figure 5. Timing of IO and internal operations 
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4.3 Implementation Details 
The block diagram in Figure 6 provides a more detailed picture of the major components of the crossbar 
controller and some of the key internal signals linking various components. The input-side interface is 
shown at the top left. Note that the arriving inputs and departing outputs all pass through clocked registers 
at the interface. The same is true for the output-side interface signals at the bottom right. Also note that 
the signals on the input and output side have corresponding signals at the interface to the matcher, that are 
propagated through the input and output crossbars. The matcher’s version of these signals are all prefixed 
with an ‘m’ to distinguish them from the external interface signals. 

The state register controls the timing of the operations performed by the various components, as illu-
strated in Figure 5. The rVec register implements a 32 bit linear feedback shift register and the lower N/2 
bits of it are used to control row swapping in the input crossbar and matcher. The qLen register, contains 
the output queue lengths, arranged in sorted order. It has N inputs that are used to either increment or 
decrement the stored values. It also has N outputs, each of which controls whether a column swap is re-
quired between one column and the next. The currentIn register specifies which input is currently asso-
ciated with a given row of the matcher array. Similarly, the currentOut register specifies which output is 
currently associated with a given column of the matcher array. These signals are maintained by the top-
level controller and are updated whenever rows or columns are swapped.  

Given this context, it’s instructive to see how the main elements of the matcher are specified using 
VHDL. Let’s start with the combinational logic used to define the matches between inputs and outputs.  
 for i in 0 to N-1 loop   
  colBusy(i) <= (others => '0'); rowBusy(i) <= (others => '0');  
 end loop; 

rowBusy(N) <= (others => '0');  
for i in 0 to N-1 loop 
 for j in 0 to N-1 loop 
  if i+j /= N-1 then 

    match := dp(i)(j) and (not rowBusy(i)(j)) and (not colBusy(i)(j)); 
   rowBusy(i+1)(j) <= rowBusy(i)(j) or match; 
   colBusy(i)(j+1) <= colBusy(i)(j) or match; 
  else 
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Figure 6. Detailed block diagram 
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   match := dp(i)(j) and (not rbDiag(i)) and (not cbDiag(i)); 
   rowBusy(i+1)(j) <= rbDiag(i) or match; 
   colBusy(i)(j+1) <= cbDiag(i) or match; 
  end if;             
 end loop;  
end loop; 

The colBusy and rowBusy signals are produced and used by successive cells in the matcher array. 
Specifically, colBusy(i)(j) is an input to the (i,j) cell in the array and colBusy(i)(j+1) is an output. 
Similarly, rowBusy(i)(j) is an input to the (i,j) cell in the array and rowBusy(i+1)(j) is an output. The 
match logic is defined in the inner loop. There are two cases, with the first case applying to most of the 
cells. In this case, the match variable is high if the data present bit for the (i,j) cell is set and there are no 
matches below or to the left of the current cell (as indicated by the colBusy and rowBusy inputs). The 
second case applies just to the diagonal cells of the matcher array (top-left to bottom-right). These cells 
contain flip flops for the row and column busy signals, to limit the number of stages of logic through 
which signals must propagate in a single clock tick. These flip flops are defined by the rbDiag and 
cbDiag signals. 

For those who are less familiar with VHDL, a brief word about the two kinds of assignment statements 
used above. Signal assignments use the left arrow symbol (<=) and such assignments define actual circuit 
connections. Variable assignments use the traditional Algol assignment symbol (:=) and are best thought 
of as macro definitions, that allow logic specifications to be stated more concisely. Also, note that the ex-
pression (others => '0') is a common idiom in VHDL, that is used to specify that all bits of a multi-
bit signal of unspecified length are '0'.  

Next, let’s move onto the logic that generates the active and recvFrom outputs. The signal mAc-
tive(i) is obtained directly from the colBusy signals generated earlier. The generation of the signal 
mRecvFrom is a bit more complicated. For each column in the array, its value should be the input corres-
ponding to the matching cell in that column (assuming there is one). In the following code fragment, the 
inner loop specifies xRecvFrom as the logical-OR of the values of currentIn(j) for all cells in column i 
that correspond to a match. Since there is at most one cell per column that can have a match, xRecvFrom is 
the input corresponding to that matching cell. 
 for i in 0 to N-1 loop 

 xRecvFrom := (others => '0'); 
 for j in 0 to N-1 loop 
  match := dp(i)(j) and (not rowBusy(i)(j)) and (not colBusy(i)(j)); 
  if match = '1' then 
   xRecvFrom := xRecvFrom or currentIn(j); 
  end if; 
 end loop; 

  mActive(i) <= colBusy(i)(N); mRecvFrom(i) <= xRecvFrom; 
end loop;  

The logic for  generating the grant and sendTo outputs is similar. 

Now, let's consider the process that responds to operations specified by the top-level controller. The 
main part of this process is a large case statement, with a separate case for each state. The case for the 
turnOn state is shown below.  

when turnOn => 
 for i in 0 to N-1 loop 
  for j in 0 to N-1 loop 
   if mOnOff(j) = '1' and currentOut(i) = mTarget(j) then 
    dp(i)(j) <= '1'; 
   end if; 
  end loop; 
 end loop; 
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The case for the turnOff state is similar. The matcher loads the pipeline registers along the diagonal of 
the matcher array at the end of the match1 state. 

when match1 => 
 for i in 0 to N-1 loop 
  rbDiag(i) <= rowBusy(i)((N-1)-i); 
        cbDiag(i) <= colBusy(i)((N-1)-i); 
 end loop; 

During the swapEven and swapOdd states, the matcher swaps adjacent columns if they are not in the cor-
rect order. 

when swapEven => 
 for i in 0 to (N/2)-1 loop 
  if inOrder(2*i) = '0' then 
   dp(2*i) <= dp(2*i+1); dp(2*i+1) <= dp(2*i); 
  end if; 
 end loop; 
when swapOdd => 
 for i in 1 to (N/2)-1 loop 
  if inOrder(2*i-1) = '0' then 
   dp(2*i) <= dp(2*i-1); dp(2*i-1) <= dp(2*i); 
  end if; 
 end loop; 

Note that because VHDL specifies circuit connections, not sequential execution, the column swapping 
specified by the pair of assignments is a single operation that takes place at one time, so there is no need 
for a temporary register in which to store the value, as would be required in a sequential program.  

Finally, when in the swapRows state, the matcher does a random exchange of adjacent rows, based on 
the bits of the rVec input signal. It then shuffles all the rows. The variable dpSwap represents the interme-
diate values in this two step process. 

when swapRows => 
 for i in 0 to N-1 loop  
  for j in 0 to (N/2)-1 loop 
   if rVec(j) = '0' then 
    dpSwap(2*j):= dp(i)(2*j); dpSwap(2*j+1):= dp(i)(2*j+1); 
   else 
    dpSwap(2*j) := dp(i)(2*j+1); dpSwap(2*j+1) := dp(i)(2*j); 
   end if; 
  end loop; 
  for j in 0 to N-1 loop 
   if j < N/2 then 
    dp(i)(2*j) <= dpSwap(j); 
   else 
    dp(i)(2*(j-N/2)+1) <= dpSwap(j); 
   end if; 
  end loop; 
 end loop;  

Note that the bulk of the matcher specification is concerned with overhead activities, rather than the es-
sential matching operation. This is also true of the circuitry generated by the specification.  

4.4 Functional Simulation 
To demonstrate the operation of the circuit we present results of a functional simulation for an eight port 
configuration of the ALOOFA scheduler. During the first operational cycle of the controller, the simula-
tion inputs specify the turning on of data present bits for all inputs to output 0. During the second opera-
tional cycle, the simulation inputs specify turning on data present bits for inputs 1..7 to output 1. During 
the third operational cycle, the simulation inputs specify turning on data present bits for inputs 2..7 to 
output 2, and the pattern continues in this fashion.  
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Figure 7 shows a snapshot of the simulation during the third operational cycle. The diagram at the 
right displays information obtained from the simulation output in a graphical form to facilitate under-
standing. The main array of squares represents the matcher array. The arrows linking parts of the simula-
tion output to the diagram show how the two correspond. Starting at the top, we see that the onOff signal 
is 3F during the first tick of the controller's operational cycle and all fields of the target signal are 2; 
this specifies the turning on of data present bits for inputs 2..7 to output 2. We also note that the output 
queue lengths are incremented for outputs 0 and 1, but also decremented for output 0. The currentIn 
signal determines the effective ordering of the rows of the matcher array, while the currentOut signal 
determines the column ordering. The state of the matcher array is determined by the dp (data present) bits. 
Each pair of hex digits in the dp bits represents one column of the array, so the first pair of digits (FD) 
specifies the first column of the array and indicates that all bits in this column are set, except for the 
second one from the top (left-to-right ordering in the dp bits corresponds to bottom-to-top ordering in the 
graphic). Simillarly, the subsequent pairs of hex digits (FF and 7D) specify the next two columns. In the 
graphic, active cells are indicated by a + symbol and those that are selected during the matching process 
are indicated by a  symbol. The results of the matching of inputs to outputs is reflected in the sendTo 
and recvFrom signals, along with the grant and active signals. These are shown in the graphic as a list 
of matched pairs. 
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Figure 7. Sample simulation output 
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4.5 Circuit Complexity 
We evaluated the circuit complexity of the ALOOFA controller by synthesizing the circuit for a Xilinx 
Virtex 5 FPGA, with 6 input LUTs (specifically, the XC5VFX30-2 part). The circuit complexity is shown 
in the table below, with separate columns shown for the number of Lookup Tables (LUTs) and flip flops 
(FFs). We give data for 8×8 and 16×16 circuit configurations and use these to compute an empirical scal-
ing factor. 

 
VHDL 
lines 

8x8 16x16 
scaling  
factor 

LUTs FFs LUTs FFs LUTs FFs 

matcher 160 745 79 2,975 288 4.0 3.6 

input crossbar 95 307 64 1,507 256 4.9 4.0 

output crossbar 79 240 64 1,053 256 4.4 4.0 

top 232 941 363 1,752 786 1.9 2.1 

total 614 2,233 570 7,287 1,586 3.3 3.6 

 

We separate results for the matcher, the crossbars and the top level circuit, to clarify the relative contribu-
tions of different parts of the circuit. We include empirical scaling factors at the right and note that (as 
expected), the matcher and crossbar components exhibit roughly quadratic scaling, while the top level 
circuit exhibits roughly linear scaling. In smaller configurations, the top level circuit dominates the hard-
ware complexity, but contributes a smaller fraction in larger configurations.  The matcher is substantially 
larger than the input and output crossbars. We note that the core matching operation performed by the 
matcher can be implemented with just two LUTs per cell, as can be seen from Figure 1. The actual num-
ber of LUTs is about five times larger than required by the matching operation alone. The remaining 
LUTs are used to generate the output signals (sendTo, recvFrom) and to perform the row and column 
swapping operations. We also note that that for these (relatively modest) values of N, the overall circuit 
complexity grows more slowly than one would expect, based on the asymptotic circuit complexity of 
O(N2log N). This is primarily due to to the large role played by the top level controller. Since its complex-
ity is essentially linear in N, it has a relatively large impact when N is small. 

It's also worth noting that the FPGA used for these results has 19,200 LUTs and 19,200 flip flops that 
can be used to implement circuitry, so even the 16×16 crossbar uses a modest fraction of the available 
resources. Moreover, this is a relatively small FPGA. Finally, we note that the circuit has a high ratio of 
LUTs to flip flops (more than 4:1 overall, and roughly 10:1 in the matcher). This is mainly a consequence 
of the fact that the matcher and crossbars, require relatively few flip flops, relative to combinational cir-
cuitry. Finally, we note that while the specification of the controller is reasonably concise, requiring a 
total of 614 lines of VHDL (about 12 pages); the top level circuit accounts for just over a third of the to-
tal, while the matcher accounts for just over one fourth. 

4.6 Circuit Performance 
To evaluate the performance of the circuit, we performed a complete place-and-route of the 8x8 version 
of the ALOOFA controller, with a timing constraint on the clock period. The smallest clock period for 
which the automated tools were able to successfully complete the place and route process was 5.7 ns. 
Since, a complete operational cycle of the controller takes 7 clock ticks, this translates to an overall cycle 
time of 40 ns. This is fast enough for a 50 byte packet at 10 Gb/s. For 10 Gb/s Ethernet, the smallest ef-
fective frame size is about 80 bytes (including the standard preamble and required inter-frame spacing), 
so the FPGA implementation of the ALOOFA controller can support a 10 GbE switch with a speedup of 
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1.6, while processing minimum size packets. It can provide a 2:1 speedup for frame lengths of at least 100 
bytes. 

Larger versions of the circuit cannot match that performance using FPGA technology. In general, one 
would expect that each doubling of the crossbar size would result in a doubling of the minimum clock 
period, and hence halving of the operating frequency. So for example, we would expect an FPGA imple-
mentation of a 32x32 controller to have a clock period of about 22.8 ns and a resulting operating frequen-
cy of about 43 MHz. An ASIC implementation can be expected to bring the clock period down by an or-
der of magnitude, enabling an operating frequency of more than 400 MHz. This would support a 2:1 
speedup with minimum size packets with a comfortable margin. 

There are several ways one can improve performance, further. The results provided above are based on 
a fully automated place-and-route, with no explicit floor-planning to guide the tools to the most efficient 
layout. Given the highly regular nature of the circuit, it’s likely that significantly better results could be 
obtained through careful floor-planning. 

There are also higher level changes one might make to improve the design. In particular, for larger cir-
cuit configurations, the introduction of additional pipeline registers could have a big impact on the operat-
ing frequency. The introduction of pipeline registers at the interfaces to the matcher can be expected to 
improve the clock frequency in a larger configuration by a factor between 1.5 and 2. This would add an 
additional clock tick to the operational cycle, reducing the gain by about 15%. Still, the improvement 
would be worthwhile. 

Another way to improve the performance is to combine the first two steps of each operational cycle. 
This would increase the number of pins required by N(2+log2N), but would reduce the number of ticks 
per cycle from 7 to 6. One could also reduce the number of clock ticks used for row and column swap-
ping. For example, if row swapping were not done on every operational cycle, we could improve the op-
erational performance, at the cost of a reduction in short-term fairness. One could also do only one col-
umn swap each cycle, alternating between the odd and even swap steps, although this could have an im-
pact on the scheduling performance. Combining all such optimizations, one might be able to reduce the 
number of clock ticks per cycle from 7 to 4, yielding an improvement of 75% in operating frequency. 

5. SCHEDULING PERFORMANCE 
Since the late nineties, it has been known that certain crossbar schedulers could provide strong perfor-
mance guarantees when used with a speedup of 2 or more [3,6]. While it has generally been assumed that 
a non-trivial speedup was necessary to achieve such guarantees, this has not been proven in any definitive 
way. In this section, we introduce a natural lower bound on the performance of any crossbar scheduler 
and use it to show that certain traffic patterns require a non-trivial speedup, in order to achieve work-
conserving performance. We then compare the performance of LOOFA and ALOOFA to this lower 
bound and demonstrate that both closely match the lower bound and that their performance is nearly iden-
tical. 

We define a traffic pattern to be a schedule of cell arrivals at the inputs of a crossbar. Each arriving 
cell has a designated output, and the job of the crossbar scheduler is to decide when arriving cells should 
be transferred from inputs to outputs. We can define two variants of the crossbar scheduling problem. In 
the offline scheduling problem, the entire traffic pattern is known in advance and the scheduler can use its 
knowledge of the complete traffic pattern in making scheduling decisions. In the online scheduling prob-
lem, the scheduler must make scheduling decisions as cells arrive, with no advance knowledge of the 
complete traffic pattern. In practice, we are most interested in online scheduling, but the offline problem 
is useful in establishing broadly applicable lower bounds. 

We assume a synchronous switch model in which cells arrive and depart at integer times i ≥0 and that 
for a switch with a speedup of S, cells are transferred at times i/S for integers i ≥0; we also assume that a 
cell that arrives at time t, can be transferred through the switch at time t if t is an integer multiple of 1/S. 
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However, it cannot be forwarded at the same time it is transferred though the crossbar. This implies that 
every cell is delayed by at least one time step. For any traffic pattern, P, we let Pt be the subset that in-
cludes cells that arrive at times ≤ t. Any such subset can be viewed as defining a bipartite graph on the 
crossbar’s inputs and outputs. We note that the number of cells that can be transferred through a crossbar 
at time t is bounded above by the size of a maximum size matching on the graph defined by Pt. This ob-
servation is the basis for our lower bound. If n is the number of cells in a traffic pattern P and we define 
mt to be the size of a maximum size matching on the graph defined by Pt, then a schedule that transfers all 
cells through the crossbar by time t must satisfy the following condition. 

nm
tSi

Si ≥∑
≤≤0

/
 

since the schedule cannot finish until all cells are transferred. The smallest value of t that satisfies this 
criterion is thus a lower bound on the time to transfer all cells through the crossbar, and the next larger 
integer is a lower bound on the time to both transfer and forward all cells in the schedule. 

We can apply our lower bound to a traffic pattern proposed in [16] as an effective stress test for cross-
bar schedulers. This provides concrete evidence that this traffic pattern really is inherently challenging. 
The traffic pattern is defined on n inputs and 2n–1 outputs. Let 0≤ i <n and 0≤ t <n be integers. At time t, 
all inputs i≥t receive a cell for output t, while all inputs i<t receive a cell for output n+i. This is illustrated 
in Figure 8 for the case of n=4 (inputs and outputs are assumed to be numbered from 0, starting at the 
top). Note that in this case, a crossbar with a speedup of 1 can transfer only one cell at time 0 and three 
cells at time 1. After that, it can transfer at most four cells at a time. Since a total of 16 cells are received, 
it’s not possible to transfer and forward all cells until time 5, while an ideal output-queued switch could 
transfer and forward all cells by time 4. Note that this is true no matter what scheduling algorithm is used. 
We define the excess time used by a scheduler, relative to the completion time of an ideal output-queued 
switch as the overshoot of the schedule. So, for this traffic pattern, the best possible overshoot is 25%. 

Lower bounds can be computed for the stress test traffic pattern for any speedup. Figure 9 shows how 
the lower bound varies with speedup for stress test traffic patterns with n=64. The overshoot drops as the 
speedup increases, and is zero for speedups larger than about 1.33. We observe that the completion times 
for the LOOFA and ALOOFA schedulers are generally within 25% of the completion time lower bound. 
There is a significant gap between the lower bound and the performance of LOOFA and ALOOFA; this 
gap defines the potential space for improvement of either the lower bound or the schedulers. We observe 
that there is very little difference between the performance of LOOFA and ALOOFA, and that in fact, 
ALOOFA performs slightly better than LOOFA in some cases. This confirms the intuition that the ap-
proximate sorting does not have a significant impact on the performance. 

Figure 9 shows the performance of LOOFA and ALOOFA using another performance metric, in addi-
tion to the overshoot. The miss rate for a schedule is defined to be the fraction of times that an output is 

Figure 8. Stress test traffic pattern for n=4 
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unable to send a cell, even when there is a cell in the system for that output. This provides a measure of 
the fraction of a system’s output capacity that is effectively lost due to less than ideal scheduling perfor-
mance. We observe that LOOFA and ALOOFA have nearly identical miss rates and that for speedups 
larger than about 1.4, the amount of lost output capacity is less than 5%. 

We note that while the stress test pattern does require a non-trivial speedup, it may well be the case 
that other traffic patterns have even larger intrinsic overshoots. We have not yet found “more stressful” 
traffic patterns, but note that lower bounds, such as the one described here, provide a useful tool for eva-
luating candidates for the title of most challenging traffic pattern.  

6. CLOSING REMARKS 
There are several useful directions for extending the work described here. One is to perform a more com-
prehensive study of the hardware performance of the ALOOFA scheduler, with a focus on ASIC synthe-
sis of larger configurations. In this context, it would be worthwhile exploring alternate design choices, 
such as the impact of additional pipeline stages and/or a reduction in row/column swapping overhead. 
There may also be alternate strategies for approximate sorting that would perform better than the simple 
odd-even strategy used here. 

It would also be interesting to further explore the worst-case scheduling performance of ALOOFA. We 
note that an arbitrary list of N values can be sorted in N/2 pairs of odd-even sorting steps. This suggests 
the while the output ordering provided by ALOOFA may not always match the exact output ordering, 
there may just be a finite “lag” that would still allow a slightly weaker form of worst-case performance 
guarantee. Specifically, one might conjecture that ALOOFA scheduler never fails to forward a cell for an 
output, so long as there is no cell in the system for that output that has been present for more than N/2 
time units. An approximate work-conservation result of this sort would provide a stronger case for the 
application of ALOOFA in real systems. 

It’s also interesting to note that the structure of the ALOOFA scheduler can be adapted for use with 
any other crossbar scheduler that matches inputs to outputs based on a single, consistent ordering of the 
outputs. The ordering may depend on other parameters, in addition to the output queue length, or could be 
based on completely different criteria. This is because the matching array allows fast and efficient compu-
tation of maximal matchings, and requires only that the matching proceed from the bottom left to the top 
right of the array. 
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