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Abstract

This report provides an overview of Grafalgo, an open-source library
of graph algorithms and the data structures used to implement them.
The programs in this library were originally written to support a grad-
uate class in advanced data structures and algorithms at Washington
University. Because the code’s primary purpose was pedagogical, it was
written to be as straightforward as possible, while still being highly effi-
cient. Grafalgo is implemented in C++ and incorporates some features
of C++11.

The library is available on an open-source basis and may be down-
loaded from https://code.google.com/p/grafalgo/. Source code
documentation is at www.arl.wustl.edu/~jst/doc/grafalgo. While
not designed as production code, the library is suitable for use in larger
systems, so long as its limitations are understood. The readability of
the code also makes it relatively straightforward to extend it for other
purposes.

Grafalglo includes implementations of algorithms for a variety of classi-
cal graph optimization problems. These include the minimum spanning tree
problem, the shortest path problem, the max flow problem, the min-cost
flow problem, the graph matching problem and the edge coloring problem
for bipartite graphs. Multiple algorithms are provided for each problem, il-
lustrating a variety of different approaches. While all the algorithms included
here are efficient enough to be reasonable candidates in practical applications,
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some are clearly better than others. Often the most sophisticated methods,
with the best performance from a theoretical perspective, are not the best
choice for real applications. Still, it’s instructive to study the techniques on
which these algorithms are based, and the implementations provided here
can aid in such study. This report does not attempt to describe the algo-
rithms and data structures in detail. Readers may find more information in
standard texts, including [1] and [5], as well as in the online documentation
and source code.

This report is organized mainly by problems. We start with a brief de-
scription of some basic data structures, then proceed to a discussion of the
minimum spanning tree problem and the algorithms provided to solve it.
Subsequent sections address different problems and the data structures used
to implement them.

1 Basic Data Structures

The Grafalgo library uses index-based data structures. These are data struc-
tures in which the items of interest are represented by integers in a restricted
range. For example, in a graph, we identify vertices by vertex numbers and
edges by edge numbers. Index-based data structures have some advantages
over data structures that use pointers (or object references) to identify the
objects of interest. One key advantage is that the same integer index val-
ues can be used in several related data structures. For example, in some
applications it’s useful to define several graphs on the same vertex set. If
all graphs use the same vertex numbers, it easy to relate the vertices in the
different graph objects. Using pointer-based data structures, we would need
some other explicit mechanism to relate the vertex objects in one graph to
the corresponding vertex objects in another. This can certainly be done,
but it’s cumbersome when compared to the use of shared index values. The
use of indexes also makes it easy to associate properties of interest with the
vertices or edges of a graph. These can simply be stored in separate tables,
indexed by the same vertex and edge numbers used in the graph.

Index-based data structures also allow some operations to be imple-
mented more efficiently than they can be using the equivalent pointer-based
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data structures. Let’s illustrate this with a simple index-based list, defined
on the index set 1, . . . , n. Such a list can represent any subset of the index
set, with the indexes arranged in any order. It is implemented by a simple
array called succ. For any index x in the list, succ[x] is the next index in the
list following x, or 0 if x is the last index in the list. For any index x that is
not currently in the list, we define succ[x] = −1. Figure 1 shows how the list
[7, 5, 3, 8, 2] is represented. Note that this representation allows us to im-

1 2 3 4 5 6 7 8 9 10 
succ –1 0 8 –1 3 –1 5 2 –1 –1 

Figure 1: Index-based list

plement a constant-time membership test for index-values in the list, while
a conventional list representation requires linear time. To iterate through a
list, we use the the first and next methods.

for (index x = alist.first(); x != 0; x = alist.next(x)) {..}

We frequently use this data structure to represent a list of vertices in a
graph. In this case, the index values in the list object correspond directly to
the vertex numbers in the graph. Grafalgo implements this data structure
as the List class. There is also a doubly-linked version, called Dlist.

Now, one might well object that these lists are limited, in that they do
not allow values to appear more than once in a given list. This is certainly
a valid point, and for those situations where repeated values are required,
Grafalgo provides a more generic list data structure called Glist. This is a
template-based data structure, allowing one to construct lists of arbitrary
items.

Grafalgo also includes a data structure that represents a set of circular
lists, that partitions an underlying index set. This is implemented using two
arrays succ and pred. For each index x, succ[x] is the next index in the list
containing x, while pred[x] is the previous index in the list containing x. An
example, representing the collection {[1, 3, 6], [2, 7], [4], [5, 10, 12], [8], [9, 11]}
is shown in Figure 2. Note that every index in the index set belongs to
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1 2 3 4 5 6 7 9 8 10 11 12 
succ 6 7 1 4 12 3 2 11 8 5 9 10 
pred 3 7 6 4 10 1 2 11 8 12 9 5 

Figure 2: Set of circular lists

some list, although some of these lists are singletons. This data structure is
implemented by the ClistSet class.

Now, let’s look at the representation of the Graph class used to represent
undirected graphs. An example is shown in Figure 3. The diagram at the
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Figure 3: Graph data structure

top left shows the five vertices in the graph (identified by letters rather than
integer indexes) along with the edges (identified by edge numbers). We also
associate two edge endpoint numbers with each edge. Specifically, edge e
has endpoints numbered 2e and 2e+1. The diagram includes these endpoint
numbers and shows how they are distributed among a set of adjacency lists
(for example, the list for vertex a is [2, 7, 4], corresponding to the three edges
1, 3 and 2 that are incident to a). The adjacency lists are implemented by a
ClistSet object that partitions the endpoint numbers among the adjacency
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lists. A first endpoint array identifies the first endpoint for each vertex (note
that since the adjacency lists are circular, the choice of the “first” endpoint
is arbitrary). Finally, we have an array that identifies the left and right
endpoints of each edge. We can iterate through the vertices and edges of a
graph as follows.

for (vertex u = 1; u <= g.n(); u++) {

for (edge e = g.firstAt(u); e != 0; e = g.nextAt(u,e) {

...

}

}

The Graph class also includes methods for iterating through all the edges of
the graph, and methods for creating and removing edges.

All data structures in Grafalgo include a toString method that produces
a printable representation of the data structure (for example, the string “[13
30 22]” is the string represention of a List object for indexes 13, 30 and 22).
All the data structures in the library also define a stream output operator.
So for example,

cout << myGraph;

converts the object myGraph to a string and sends it to the standard output
stream.

For small instances of a data structure, the toString method converts
index values to lower-case letters. So for example, the list [1, 3, 4] is shown
as the string “[a c d]”, and the graph in the earlier example is shown as

{

[a: b c d]

[b: a e]

[c: a d]

[d: a c e]

[e: b d]

}
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Here, each line represents one adjacency list. This style of representation is
used for any data structure defined on an index set 1, . . . , n, where n ≤ 26.
This makes small examples easier for human readers to understand, especially
for data structures that also have other numeric data, such as edge weights
or key values. For data structures using larger index sets, the integer values
are used in the string representation.

2 Minimum Spanning Tree Problem

The objective of the minimum spanning tree problem is to find a spanning
tree of an edge-weighted graph that has the smallest total weight. So for
example, the bold edges in Figure 4 represent a minimum spanning tree of
the graph shown.

a 

e b 

c 
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9 
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2 

6 

Figure 4: Minimum spanning tree

Grafalgo contains several algorithms that solve the minimum spanning
tree problem. All have two arguments, a Wgraph object and a Glist object
in which the result is returned. Specifically, on return, the Glist contains the
edge numbers of the edges in the minimum spanning tree.

Prim’s algorithm finds a minimum spanning tree in O(m log2+bm/nc n)
time. For dense graphs, this is O(m), which is optimal. For very sparse
graphs (m = Θ(n)), the running time is O(m log n), which falls a little short
of optimal. Prim’s algorithm uses a d-heap to guide the selection of edges
to be included in the tree. The Dheap class represents a set of items, each
with a numeric key. The Dheap is used to guide the selection of edges to be
included in the tree, where the keys correspond to edge weights in the graph.
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The Dheap class is implemented as a template, allowing different key types
to be used in different applications.

A second version of Prim’s algorithm is also provided. PrimF uses a
Fibonacci heap in place of the d-heap. This leads to a worst-case running
time of O(m+n log n) which is better for sparse graphs. However, in practice,
the relative simplicity of the d-heap data structure makes the first version
faster under most conditions. Fibonacci heaps do have some nice features
relative to d-heaps. In particular, the Fheap class represents a collection
of heaps that partitions an underlying index set. Pairs of heaps can be
efficiently combined (called melding), something that cannot be done using
d-heaps.

Kruskal’s algorithm finds a minimum spanning tree in O(m log n) time.
Its running time is determined by an initial step which sorts the edges by
weight. If the edges happen to be pre-sorted or can be sorted using radix
sort, then Kruskal’s algorithm runs in O(mα(m,n)) where α is a very slowly
growing function (it is inversely related to Ackerman’s function). It builds
the minimum spanning tree by scanning edges in order of their weight and
including any edge that does not create a cycle among the tree edges selected
so far. It uses a Partition object to maintains a partition over the vertices in
the graph. This is used to efficiently determine if an edge joins two vertices
that are already connected by a path consisting of tree edges. (The partition
data structure is often referred to as the union-find data structure.)

The Cheriton-Tarjan algorithm runs in O(m log logn) time. For very
sparse graphs, this yields the best overall performance among the algorithms
included in Grafalgo, although the extra overhead of its data structures pre-
vents it from out-performing Prim’s algorithm in typical applications. Like
Kruskal’s algorithm, it uses a Partition data structure to determine if two
vertices are in a common subtree of the forest defined by the tree edges se-
lected so far. It also uses a leftist heap data structure to represent the edges
incident to each subtree in the current forest.

This section of the library also includes a program called testMst that
can be used to compute a minimum spanning tree on a given graph, using
a specified algorithm. A separate program called randGraph can be used
to generate random weighted graphs that serve as input to testMst. So
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for example, the command randGraph wgraph 6 8 1 9 1 0 produces the
output

{

[a: e(9) f(9)]

[b: c(7) d(2) e(8) f(9)]

[c: b(7) f(9)]

[d: b(2)]

[e: a(9) b(8) f(7)]

[f: a(9) b(9) c(9) e(7)]

}

The first argument to randGraph is the type of graph (possiblities include
ugraph, bigraph, tree, wgraph, digraph, dag and flograph among others).
The second and third arguments specify the number of vertices and edges in
the graph. The next two specify the range of edge weights to be used. The
next argument is the seed for the random number generator and a non-zero
value for the last argument specifies that the vertex and edge numbers should
be randomly scrambled (this is mostly useful for types of graph where the
default numbering of vertices makes certain structural features apparent).
The command

randGraph wgraph 6 8 1 9 1 0 | testMst kruskal show verify

produces the output

mst weight: 33

{

[a: e(9) f(9)]

[b: c(7) d(2) e(8) f(9)]

[c: b(7) f(9)]

[d: b(2)]

[e: a(9) b(8) f(7)]

[f: a(9) b(9) c(9) e(7)]

}

(b,d,2) (e,f,7) (b,c,7) (b,e,8) (a,f,9)
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The list of edges at the bottom defines the minimum spanning tree. The
first argument to testMst specifies the algorithm to use, the optional second
argument requests that the graph and spanning tree be output (if omitted,
only the mst weight is output), the optional third argument requests that
the spanning tree be checked for validity.

Using these two programs, one can write simple scripts that test a given
algorithm on a wide variety of sample graphs, and automatically check the re-
sults for correctness. Another program called timeMst can be used to obtain
basic timing measurements of a specified algorithm, when run repeatedly on
different random graphs.

3 Shortest Paths

The shortest path problem involves determining minimum length paths in a
directed graph with numeric edge lengths. There are several variants of the
problem. Grafalgo includes algorithms for the single-source version of the
problem and the all pairs version.

Two algorithms are implemented for the single-source problem, dijkstra
and bellmanMoore. Dijkstra’s algorithm is implemented using a d-heap and
has a running time of O(m log2+m/n n), but is restricted to graphs with non-
negative edge lengths. The Bellman-Moore algorithm can handle graphs with
negative edge lengths, it requires only a simple queue and and runs in O(mn)
time. Both take four arguments, a Wdigraph object, a source vertex and two
arrays used to return the results of the computation. The parent-edge array
specifies the edge connecting each vertex to its parent in the shortest path
tree, while the distance array specifies the shortest path distance from the
source.

Grafalgo also includes two algorithms for the all-pairs version of the prob-
lem, floyd and edmondsKarp, both of which can handle negative edge lengths.
Floyd’s algorithm runs in O(n3) time, while the Edmonds-Karp algorithm
runs in O(mn log2+m/n n) time. Both return a 2-d array of distances, plus a
second array that defines the actual shortest paths.

There are also several utilities: testSpt, testAllPairs, timeSpt and timeAll-
Pairs that can be used to demonstrate correct operation and generate timing
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information. For example, the command

randgraph wdigraph 6 15 1 9 5 0 | testSpt dijkstra show verify

produces the output

distance sum is 25

{

[a: b(5) c(2) d(4)]

[b: f(8)]

[c: b(7) d(5) e(1)]

[d: b(1) c(2)]

[e: a(1) c(7) d(6) f(8)]

[f: b(3) d(1)]

}

0 5 2 4 3 11

(a,b,5) (a,c,2) (a,d,4) (c,e,1) (e,f,8)

where the last line lists the edges in a shortest path tree with source vertex a,
while the preceding line gives the distance of the vertices from a (in order).

4 Maximum Flows

An instance of the maximum flow problem is a directed graph with a source
vertex, a sink vertex and positive edge capacities. A flow function for such a
graph is an assignment of non-negative flow values to the edges that respects
the edge capacities and that balances the incoming and outgoing flows at
all vertices, except the source and sink. The objective of the problem is
to find a flow function that maximizes the total flow leaving the source.
Grafalgo includes a Flograph class which implements edge capacities, flows
and methods for manipulating flows.

There are many different algorithms for the maximum flow problem.
Grafalgo includes implementations of three major “families” of algorithms.
The Ford-Fulkerson algorithms find maximum flows using the concept of
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augmenting paths. Three variants of the Ford-Fulkerson algorithm are im-
plemented in Grafalgo. The shortest path variant finds augmenting paths
of minimum length in O(m2n) time, the maximum capacity variant finds
paths of maximum residual capacity and runs in O(m2 log2+m/n n logC)
time, where C is the maximum edge capacity, and the capacity scaling vari-
ant finds high capacity augmenting paths (not necessarily maximum capacity
paths) and runs in O(m2 logC) time. These algorithms are implemented as
classes, allowing the internal data used by the algorithms to be shared among
their internal methods, but hidden from other parts of the program. The
algorithms are invoked using the constructor (creating a temporary object
that is retained only while the algorithm executes). The classes used to im-
plement the algorithms are ffShortPath, ffMaxCap and ffScale; they share a
common base clase fordFulkerson.

Dinic’s algorithm is a more sophisticated version of the shortest path
variant of the Ford-Fulkerson algorithm. Instead of starting over with each
augmenting path search, it operates in phases, where each phase finds all
paths of a given length. This enables a more efficient search procedure and
an overall running time of O(mn2). A second version of Dinic’s algorithm,
using dynamic trees [4], improves this to O(mn log n). The dynamic trees
data structure is implemented by the class Dtrees.

The preflow-push algorithms are based on the concept of a preflow (a flow
function that is allowed to violate the balance conditions of ordinary flow
functions). Grafalgo implements two variants, the fifo variant, which runs
in O(n3) time, and the highest-label-first variant, which runs in O(m1/2n2)
time. These are implemented by the classes ppFifo and ppHiLab, which
share a common base class prePush.

Grafalgo also includes utilities for testing different max flow algorithms
and measuring their running times. The command

randGraph flograph 10 20 2 30 10 1 0 | testMaxFlo dinic show

produces the output
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total flow of 17

{

[b: c(7,0) d(8,4) f(6,6) h(9,6)]

[c: d(1,1) e(5,0)]

[d: a(1,0) g(4,4) h(1,1)]

[e: a(2,0) c(7,0)]

[f: h(2,0) j(15,13)]

[g: c(4,0) d(3,0) j(28,4)]

[h: f(7,7) g(5,0)]

[i->: b(16,16) c(16,1)]

[->j:]

}

The capacity and flow is shown for each edge in the Flograph object. The
source vertex is i and the sink is j.

Grafalgo also includes an algorithm for a variant of the max flow problem
in which some edges have minimum flow requirements. This problem can be
solved by first finding a feasible flow (which may not always be possible),
then converting the feasible flow to a maximum flow. A separate Mflograph
class is used to implement this algorithm. It allows the specification of
minimum flows and re-defines the residual capacity of an edge to account
for the minimum flows.

5 Minimum Cost Flows

In the min-cost flow problem, each edge has an associated cost The cost of
the flow on an edge is the product of the flow and the edge cost, and the total
cost of the flow is the sum of the costs of the flows on the edges. Grafalgo
includes a Wflograph class for use by min-cost flow algorithms.

The cycle reduction algorithm converts an arbitrary maximum flow to one
of minimum cost by pushing flow around cycles of negative cost. Its worst-
case running time is O(m2nCγ) where C is the maximum edge capacity and
γ is the maximum edge cost. The least-cost augmenting path algorithm uses
augmenting paths of minimum cost. This can be implemented to run in
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O(Fm log2+m/n n) time, where F is the maximum flow value. The capacity
scaling algorithm adds flows to high capacity paths, leading to a running time
of O(m2 log2+m/n n logC). These algorithms are implemented by the classes
mcfCycRed, mcfLcap and mcfScale. Utilities are provided to demonstrate
the correct operation of the min cost flow algorithms and measure their
running times.

6 Matching

A matching in an undirected graph is a subset of the edges, no two of which
are incident to the same vertex (or equivalently, it is a degree 1 subgraph).
The objective of the matching problem in unweighted graphs is to find a
matching with the maximum possible number of edges. If the edges have
weights, the objective is to find a matching of maximum weight. The special
case of bipartite graphs is easier to solve and has a variety of applications.

Grafalgo includes several algorithms for finding matchings in bipartite
graphs, based on the concept of augmenting paths. The Hopcroft-Karp al-
gorithm finds a maximum size matching in O(mn1/2) time. A closely related
algorithm reduces the matching problem to a maximum flow problem and
has the same running time. The Hungarian algorithm finds a maximum
weight matching in O(mn log2+m/n n) time. The same running time can be
obtained by reducing the matching problem to a minimum cost flow problem.

The algorithms for unrestricted graphs are all variants of Edmond’s al-
gorithm. The Edmonds-Gabow algorithm for unweighted graphs runs in
O(mn log n) time. The Galil-Micali-Gabow implementation of Edmond’s al-
gorithm [3] for weighted graphs also runs in O(mn log n) time. Grafalgo does
not yet include a full implementation of the Galil-Micali-Gabow algorithm,
but it does include a version that is specialized to bipartite graphs.

Grafalgo also includes an algorithm for finding matchings in bipartite
graphs that cover all vertices of maximum degree. This can be useful for
some algorithms for edge coloring in bipartite graphs.
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7 Edge Coloring

The objective of the edge coloring problem is to assign colors to all edges of
a graph, in such a way that no two edges incident to the same vertex are
assigned the same color (or equivalently, it seeks to partition the graph into
a minimum number of matchings). For a bipartite graph with maximum
degree ∆, the edges can be colored with ∆ colors.

Grafalgo includes several algorithms for coloring bipartite graphs. Viz-
ing’s algorithm colors edges by finding alternating paths and can be imple-
mented to run in O(mn) time. The matching algorithm finds a sequence
of matchings that cover vertices of maximum degree, removing the match-
ing edges from the graph after each step. It can be implemented to run in
O(mn1/2∆). Gabow’s algorithm [2] uses a divide-and-conquer strategy that
uses Euler partitions to split the graph into parts with smaller maximum
vertex degree. It can be implemented to run in O(mn1/2 log ∆) time. For
graphs where ∆ is a power of 2, it runs in O(m log ∆) time.

8 Closing Remarks

The Grafalgo library includes a number of other components, including
classes that implement hash tables, search trees and multi-threaded queues,
as well as assorted utility functions.

This report is meant only as a brief introduction to Grafalgo. To learn
more about the algorithms that have been mentioned here, see the references.
To learn more about the implementations, see the on-line documentation
and the source code. Grafalgo remains a work-in-progress and additional
algorithms and data structures will be added over time. This is an open-
source project and anyone interested in contributing is invited to contact the
author (jon.turner@wustl.edu).
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