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Abstract

Let G = (V,E) be an undirected graph with n vertices and m edges,
in which each vertex u is assigned an integer priority in [1, n], with 1
being the “highest” priority. Let M be a matching of G. We define
the priority score of M to be an n-ary integer in which the i-th most-
significant digit is the number of vertices with priority i that are incident
to an edge in M . We describe a variation of the augmenting path
method (Edmonds’ algorithm) that finds a matching with maximum
priority score in O(mn) time.

1 Introduction

A matching in an undirected graph is a subset of its edges, no two of which
share a common endpoint. In the maximum size matching problem, the
objective is to find a matching with the largest possible number of edges.
Edmonds showed how to solve the problem for general graphs [1] and more
efficient implementations of his method are described in [2] and [5]. Hopcroft
and Karp described a simpler algorithm for the case of bipartite graphs [4].

A matching is said to match a vertex u, if one of its edges is incident
to u. Given a graph in which vertices are assigned integer priorities ρ(u), a
maximum priority matching is one that maximizes the number of matched
vertices in the highest priority class, then maximizes the number of matched
vertices in the next priority class (without reducing the number matched in
the highest priority class), and so forth. We define a matching’s priority
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Figure 1: Example showing the priority score for a matching

score to be the n-ary number in which the i-th most-significant digit is the
number of matched vertices with priority i. Figure 1 shows an example of
a graph with a matching whose priority score is 2111000100. Adding the
edge ac yields a matching with a score of 2211100100. A maximum priority
matching is a matching that has a priority score with maximum value. This
version of the matching problem arises as a subproblem in an approximation
algorithm for an np-complete scheduling problem for crossbar switches used
in internet routers [7].

In this paper, we show how Edmonds’ algorithm for the ordinary match-
ing problem can be extended to solve priority matching problems. In section
2, we focus on the special case of two priorities (ρ(u) ≤ 2 for all u). This
problem is of independent interest and provides a useful introduction to the
methods used in the more general case, which is discussed in section 3.

2 Two priority case

The two priority case can be phrased more simply by defining a set S consist-
ing of all vertices with priority 1. Our objective is then to find a maximum
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size matching that also matches the largest possible number of vertices in S.
In Edmonds’ algorithm for maximum size matching, augmenting paths

are used to convert a matching to a larger one. Given a matching in a graph,
an augmenting path is a simple path in which the edges alternate between
matching edges and non-matching edges, with both endpoints unmatched.
By reversing the status of the matching and non-matching edges on such a
path, we can obtain a new matching with one more edge than the original.
Thus, so long as we can find an augmenting path, we can expand a given
matching. Edmonds showed that if a larger matching exists, the graph must
contain an augmenting path.

For the priority matching problem, we must adjust the definition of an
augmenting path. Let M be a matching of a graph G that does not match
all the vertices in the given set S. An augmenting path in G with respect
to M is a path p = u0, . . . , ut in which every other edge belongs to M , u0 is
unmatched, u0 ∈ S and if ut is matched, ut 6∈ S.

Figure 2 shows examples of two such paths. Observe that in both cases,
if one replaces the path edges in M with the path edges not in M , we get a
new matching that matches at least one more vertex in S. Also, note that
when we expand a matching in this way, all previously matched vertices in
S remain matched.

Figure 2: Augmenting paths for two priority case (shaded vertices are in S)

Define the count of a two-priority matching to be the number of vertices in
S that are incident to edges in the matching. Now consider two matchings M
and M ′, where M has a smaller count than M ′. Let N be the graph defined
by the edges that are in M or in M ′, but not both. Note that N consists
of a collection of disjoint paths and cycles with alternate edges in M and
M ′. Since M ′ has a larger count than M , N must contain at least one path
p in which M ′ matches more elements of S than does M . Since all interior
vertices of a path are matched by both M and M ′, the path endpoints must
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account for the difference in the matchings’ counts. That means that at
least one endpoint must be in S and unmatched by M . If the other endpoint
is matched, it cannot also be in S. Hence, p satisfies the condtion for an
augmenting path with respect to M . Thus, for any matching that does not
have the largest possible count, there exists an augmenting path that can be
used to obtain a new matching with a larger count.

Observe that given a matching with the maximum possible count, but
less than maximum size, the original augmenting path method can be used to
obtain a matching with the same count, but one more more matching edge.
Hence one can easily convert a maximum count matching to one that has
both maximum count and size. Such a matching also maximizes the number
of matched vertices that are not in S, hence it satisfies the definition of a
maximum priority matching for the 2 priority case.

To complete the description of the augmenting path method, we still need
an algorithm to find an augmenting path. Our presentation is an adaptation
of that given in [6] for the maximum size matching problem. We start with
the special case of bipartite graphs.

The algorithm finds an augmenting path by building a collection of trees
rooted at unmatched vertices in S. Vertices that have not yet been added
to a tree are called unreached, while a vertex u in a tree is called odd or
even depending on the length of the tree path from u to the root of the
tree. Initially, the unmatched vertices in S are the only tree vertices. The
algorithm also maintains a list of eligible edges that initially contains all
edges incident to tree roots. It then repeats the following step until it either
finds an augmenting path or runs out of eligible edges.

Select an eligible edge e = {u, v} for which u is even, remove it from
the eligible list, then apply the applicable case from those listed below.

• If v is unreached and matched, let {v, w} be the matching edge
incident to v. Extend the tree containing u by making v a child
of u and w a child of v. If w is not in S, then the path from w
to the root of its tree is an augmenting path; otherwise, add all
non-matching edges incident to w to the eligible list.
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Figure 3: Example of bipartite algorithm at start of augmenting path search
and after three steps (even vertices labelled +, odd vertices − and arrows
point to parents in trees)

• If v is unreached and unmatched then the path consisting of e
plus the tree path from u to its tree root is an augmenting path.

• If v is even then the path formed by combining e with the tree
path from u to the root of its tree and the tree path from v to the
root of its tree is an augmenting path. (Note that u and v are in
different trees, since the graph is bipartite.)

• If v is odd, ignore e and proceed to the next eligible edge.

Figure 3 illustrates the operation of the algorithm. Note that if edge bf is
selected next, the algorithm will ignore it, if fi is selected next, it will find
the odd-length augmenting path acfi, and if edge jk is selected next, it will
find the even-length augmenting path ghjkn.

To establish the correctness of the algorithm, we show that if it halts
without finding an augmenting path, then the graph must not contain one.
We start by noting a few properties of the algorithm.

1. Every tree root is unmatched and in S and each tree has exactly one
unmatched vertex.
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2. Every matching edge either has both endpoints unreached, or one odd
and one even. In the latter case, the even endpoint is the child of the
odd endpoint in some tree.

3. Every edge joining two vertices in the same tree joins an odd vertex to
an even vertex.

4. If the algorithm fails to find an augmenting path, then when it fails,
every edge with an endpoint in some tree has at least one odd endpoint.

5. If the algorithm fails to find an augmenting path, then when it fails,
every even vertex is in S.

Properties 3 and 4 imply that if the algorithm fails to find an augmenting,
any path u0, u1, . . . , ut with u1 a child of u0 that alternates between matching
and non-matching edges, must also alternate between even and odd vertices.
So in particular, if the algorithm fails to find an augmenting path, but the
graph contains an augmenting path p = u0, . . . , ut with u0 unmatched and
in S, all vertices in p must alternate between even and odd. If t is odd,
this implies that ut is odd and unmatched, but this contradicts the fact that
every odd vertex is matched. If t is even, then ut is even and matched, but
this contradicts property 5, since the matched endpoint of an augmenting
path cannot be in S.

Before proceeding to the case of general graphs, we show that for the
special case where S consists of all vertices of maximum degree, the algorithm
finds a matching that covers all vertices in S. Assume, to the contrary, that
the algorithm fails to find an augmenting path when there is some unmatched
vertex in S. Consider the collection of trees at the time the algorithm halts
and recall that by property 5, all the even vertices must be in S. Since every
tree has one more even vertex than it has odd vertices, some even vertex must
have an edge that connects it to an unreached vertex, but this contradicts
property 4. Hence, the algorithm matches all vertices in S.

Next, we show how to find augmenting paths in general graphs. As
with ordinary matchings, the key issue is handling odd-length cycles, known
as blossoms. Edmonds showed how to extend the ordinary augmenting path
search to recognize blossoms and shrink each blossom down to a single vertex,
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Figure 4: Example of general graph with blossoms

producing a new graph which has an augmenting path if and only if the
original graph does. This is illustrated in Figure 4, which shows a blossom
B1 containing vertices c, d, e, f and g and a blossom B2 containing vertices j, k
and m. In the “shrunken graph” on the right, we have two augmenting paths
abB1h and abB1B2ih. The corresponding paths in the original graph are
abcdegfh and abcfgkmjih. There is a straightforward procedure to obtain an
augmenting path in the underlying unshrunken graph, given an augmenting
path in the current shrunken graph.

We say than a vertex is internal if it is contained in some blossom, other-
wise it is external. The base of a blossom is the unique vertex in the blossom
that has no incident matching edge with the other endpoint in the blossom.
So, in Figure 4, the base of B1 is c and the base of B2 is j.

Our algorithm modifies the blossom-shrinking procedure to accommodate
our modified augmenting paths. As in the bipartite case, the algorithm finds
an augmenting path by building a collection of trees rooted at unmatched
vertices in S. For convenience, we let β(u) denote the largest blossom con-
taining a vertex u (if u is external, β(u) = u). Initially, all edges incident
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to tree roots are on the list of eligible edges. The algorithm then repeats
the following step until it either finds an augmenting path in the current
shrunken graph or runs out of eligible edges.

Select an eligible edge e = {u, v} for which β(u) is even and remove it
from the list of eligible edges.

• If v is unreached and matched, let {v, w} be the matching edge
incident to v; extend the tree by making v a child of u and w a
child of v. If w is not in S, then the path from w to the root
of its tree in the current shrunken graph is an augmenting path;
otherwise, add all non-matching edges incident to w to the eligible
list.

• If v is unreached and unmatched, then the path consisting of e
plus the tree path from β(u) to the root of its tree in the current
shrunken graph is an augmenting path.

• If β(v) is even and in a different tree than β(u), then the path
formed by combining e with the tree path from β(u) to the root
of its tree in the current shrunken graph and the tree path from
β(v) to the root of its tree is an augmenting path.

• If β(v) is even and in the same tree as β(u), then the cycle formed
by combining e with the tree paths in the current shrunken graph
from β(u) and β(v) to their nearest common ancestor forms a
blossom. If some odd vertex x in the cycle is not in S, then there
is an augmenting path in the current shrunken graph from x to
the root of its tree that starts with the matching edge incident to
x, proceeds around the new blossom to its base and then up the
tree to the root. If there is no such vertex, add all non-tree edges
incident to odd vertices in the blossom cycle to the eligible list
and shrink the blossom.

• If β(v) is odd, ignore e and proceed to the next iteration

Figure 4 can be used to illustrate the operation of the algorithm (note that
the shaded vertices are in S). When the algorithm reaches the state shown
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on the left side of the figure, the eligible edges are hf, dg, gk, eg and jm.
The algorithm ignores edges hf, dg and gk and forms one blossom when
processing edge eg and the other when processing jm. At this point, edges hf
and gk are again eligible. Processing either edge leads to the discovery of an
augmenting path. Also, observe that if d were not a member of S, then when
edge eg was processed, the algorithm would have found the augmenting path
abcfged. We defer the correctness proof of the algorithm to the next section.

3 Unlimited priorities

We can find a maximum priority matching for the general case using a gen-
eralization of the algorithm for the two priority case. We first maximize the
number of priority 1 vertices that are matched, then the number of prior-
ity 2 vertices and so forth. At each step, we find an augmenting path that
increases the number of matched priority i vertices without decreasing the
number of priority j vertices, for all j < i.

Define the i-score of a matching M as the n-ary integer with i digits
in which the j-th most significant digit is the number of priority j vertices
that are matched by M . For example, in Figure 1, the 2-score is 21 and the
5-score is 21110. Given a matching M with a maximum (i − 1)-score, an
i-augmenting path is a path p = u0, . . . , ut in which edges alternate between
matching edges and non-matching edges, u0 is unmatched, ρ(u0) = i, and if
ut is matched, ρ(ut) > i. Observe that because M has a maximum (i − 1)-
score, if ut is unmatched, it cannot have priority less than i. Consequently,
if we exchange the non-matching edges and matching edges in p, we obtain
a new matching with the same (i− 1)-score and a larger i-score than M .

To justify the use of augmenting paths, we must show that if a matching
M has a maximum (i−1)-score but not a maximum i-score, then there must
be an i-augmenting path for M . Let M be such a matching and let M ′ be a
matching with a larger i-score. Let N be the graph consisting of edges that
are in M or M ′ but not both. N consists of a collection of disjoint paths
and even-length cycles. Since M ′ has a larger i-count than M , there must
be some path p in N , in which M ′ has a larger i-count than M . If p is an
odd-length path, its endpoints must be unmatched by M and at least one of
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its endpoints must have priority i, making p an augmenting path for M . If
p is an even length path, the endpoint that is unmatched by M must have
priority i and the endpoint matched by M must have priority > i. Hence, p
is an augmenting path in this case, as well. We summarize this argument in
the following theorem.

Theorem 1 Let G = (V,E) be an undirected graph with priorities ρ(u)
and let M be a matching with a maximum (i − 1)-score. G contains an i-
augmenting path with respect toM if and only ifM does not have a maximum
i-score.

To find a matching with maximum overall priority score, we initialize i = 1,
then repeat the following step until i > n.

Search for an i-augmenting path; if one is found, augment the matching
by reversing the status of the path edges, otherwise increment i.

The heart of the method is the algorithm used to find an i-augmenting path.
At the start of each path search, all unmatched priority i vertices are tree
roots, and all edges incident to these vertices are in the eligible list. The
algorithm then searches for an i-augmenting path by repeating the following
step until it either finds a path or runs out of eligible edges.

Select an eligible edge e = {u, v} for which β(u) is even and remove it
from the list of eligible edges.

• If v is unreached and matched, let {v, w} be the matching edge
incident to v; extend the tree by making v a child of u and w a
child of v. If ρ(w) > i then the path in the current shrunken graph
from w to the root of its tree is an i-augmenting path; otherwise,
add all non-matching edges incident to w to the eligible list and
continue.

• If v is unreached and unmatched, then the path consisting of e
plus the tree path in the current shrunken graph from β(u) to the
root of its tree is an i-augmenting path.
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• If β(v) is even and in a different tree than β(u), then the path
formed by combining e with the tree path from β(u) to the root
of its tree in the current shrunken graph and the tree path from
β(v) to the root of its tree is an i-augmenting path.

• If β(v) is even and in the same tree as β(u), then the cycle formed
by combining e with the tree paths in the current shrunken graph
from β(u) and β(v) to their nearest common ancestor forms a
blossom. If some odd vertex x on the blossom cycle has ρ(x) > i,
then there is an i-augmenting path in the current shrunken graph
from x to the root of the tree that starts with the matching edge
incident to x, continues around the blossom cycle to its base and
then up the tree to the root. If there is no such vertex, add all
non-tree edges incident to odd vertices on the blossom cycle to
the eligible list and shrink the blossom.

• If β(v) is odd, ignore e and proceed to the next iteration.

Once again, to establish the correctness of the algorithm, we need to show
that if it halts without finding an i-augmenting path, then the graph must
not contain one. Note the following properties of the algorithm.

1. Every tree root is unmatched and has priority i and each tree has
exactly one unmatched vertex.

2. Every matching edge either has both endpoints unreached, or one odd
and one even. In the latter case, the even endpoint is the child of the
odd endpoint in some tree.

3. For every internal vertex x, β(x) is even, and if x is unmatched, then
β(x) is unmatched.

4. If the algorithm fails to find an augmenting path, then when it fails,
any edge that has endpoints that are both even or internal is contained
within some blossom.

5. If the algorithm fails to find an augmenting path, then when it fails,
every vertex x that is even or internal has ρ(x) ≤ i.
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Now, suppose that the original graph contains an augmenting path p =
u0, . . . , ut, but the algorithm halts without finding a path. If both endpoints
of p are unmatched, then the endpoints cannot be in the same tree (by
property 1). In this case, let {uk, uk+1} be an edge in p with uk and uk+1 in
different trees. By property 5, at least one of uk and uk+1 must be odd and
external. Assume, without loss of generality, that uk is odd and external.
Since {uk−1, uk} is a matching edge, k is even. If just one endpoint (u0) of
p is unmatched, then t is even, ρ(ut) > i and hence ut odd and external (by
property 4). Thus, in both cases, p contains an odd external vertex uk with
k even.

Let j be the smallest even integer for which uj is odd and external.
Since uj is external, there must some vertex in {u0, . . . , uj−1} that is odd
and external. (If not, all vertices in {u0, . . . , uj−1} must be contained in
a common blossom (property 5), and since u0 is unmatched, the blossom
must be also (property 3), hence must include the matching edge {uj−1, uj},
contradicting the fact that uj is external.) Let i be the largest integer <
j for which ui is odd and external and note that i must be odd. This
implies that all vertices in {ui+1, . . . , uj−1} are in a common blossom and
that blossom is incident to two matching edges {ui, ui+1} and {uj−1, uj}.
This contradiction implies the correctness of the algorithm. (This argument
was adapted from [6].)

Each augmenting path search can be implemented to run in O(m log n)
time using the method described in [2] to represent the current shrunken
graph. This can be reduced to O(m) time using the data structure described
in [3].

Theorem 2 The augmenting path algorithm for priority matching computes
a matching with maximum priority score. It can be implemented to run in
O(mn) time.

We close by noting that the maximum priority matching is also a max-
imum size matching. If it were not, we could find an ordinary augmenting
path in the graph that would match two more vertices, giving it higher pri-
ority score.
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4 Closing remarks

The maximum size matching problem can be solved in O(mn1/2) time using
the algorithms described in [4] for the bipartite case and [5] for the general
case. It is possible that one or both of these algorithms could be adapted to
handle maximum priority matching.

It might also be interesting to consider a weighted version of the problem.
In the maximum weight matching problem, we seek a matching that maxi-
mizes the sum of the edge weights of the edges in the matching. While one
cannot simultaneously maximize the weight and priority score of a matching,
one could conceivably maximize the weight of a matching with a specified
minimum priority score, or maximize the priority score of a matching with a
specified minimum weight. Alternatively, one might associate weights with
vertices and find matchings that maximize the weight of matched vertices.
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