
Faster Maximium Priority Matchings

in Bipartite Graphs

Jonathan Turner

wucse-2015-08

Abstract

A maximum priority matching is a matching in an undirected graph
that maximizes a priority score defined with respect to given vertex
priorities. An earlier paper showed how to find maximum priority
matchings in unweighted graphs. This paper describes an algorithm
for bipartite graphs that is faster when the number of distinct priority
classes is limited. For graphs with k distinct priority classes it runs in
O(kmn1/2) time, where n is the number of vertices in the graph and m
is the number of edges.

The maximum priority matching problem was introduced in [9]. In this
problem, each vertex has an integer-valued priority and the objective is to
find a matching that maximizes a priority score defined with respect to these
values. The priority score is defined as the n-ary number in which the i-th
most-significant digit is the number of matched vertices with priority i. The
earlier paper described an algorithm for finding maximum priority matchings
in O(mn) time that is based on Edmonds’ algorithm for the maximum size
matching problem [2, 3, 6].

In a private communication, Tarjan observed that the 2-priority case for
bipartite graphs could be solved in O(mn1/2) time using a recent algorithm
for weighted matchings in bipartite graphs [1, 4, 7]. One assigns a weight of 0,
1 or 2 to each edge based on the number of high priority vertices it is incident
to. A maximum weight matching of this graph matches the largest possible

1



number of high priority vertices. It can then be extended to a maximum
priority matching using an algorithm by Hopcroft and Karp [5]. Tarjan
speculated that this approach might be extended to handle multiple priority
classes. This paper takes a different approach, yielding a simpler algorithm
that handles the k-priority case in O(kmn1/2) time, making it faster than
the earlier algorithm when k grows more slowly than n1/2.

We assume that the reader is familiar with [9], which describes a gener-
alization of the augmenting path algorithm of Edmonds. In this algorithm
there are two types of augmenting paths. Odd-length augmenting paths in-
crease the number of edges in the current matching and may also increase
its priority score, while even-length augmenting paths increase the priority
score without changing the size of the matching.

Here, we take a slightly different approach. Let G = (V,E) be an undi-
rected bipartite graph with vertex priorities p(u) and let V1 and V2 define the
bipartition of G (that is, all edges join vertices in V1 to vertices in V2). The
algorithm starts by finding a maximum size matching, then sets an integer
variable i to the index of the first non-empty priority class and repeats the
following step until all non-empty priority classes have been processed.

While there are even-length i-augmenting paths with an unmatched
vertex in V1, find such a path and reverse the matching status of its
edges. While there are even-length i-augmenting paths with an un-
matched vertex in V2, find such a path and reverse the matching status
of its edges. Advance i to the index of the next non-empty priority
class.

The augmenting path searches in each step can be implemented by solv-
ing a pair of maximum flow problems on unit graphs. These can be solved
in O(mn1/2) time using Dinic’s algorithm [8]. The original maximum size
matching can also be found in O(mn1/2) time using the Hopcroft-Karp al-
gorithm, yielding an overall time bound of O(kmn1/2) for k priority classes.

Let M1 be the matching at the start of step i. We construct an instance
of the maximum flow problem X1 = (W1, F1) as follows.

W1 = V ∪ {s, t}

2



F1 = {(u, v) | u ∈ V1, v ∈ V2 and {u, v} 6∈M1}
∪ {(v, u) | u ∈ V1, v ∈ V2 and {u, v} ∈M1}
∪ {(s, u) | u ∈ V1 is unmatched and p(u) = i}
∪ {(u, t) | u ∈ V1 is matched and p(u) > i}

All edges are assigned a capacity of 1. Observe that X1 is a unit graph, since
each vertex has at most one incoming or one outgoing edge. A maximum
flow f1 on X1 can be decomposed into a set of augmenting paths in X1.
Each of these paths corresponds directly to an i-augmenting path in G and
consequently, f1 defines a modified matching M2.

M2 = {{u, v} | u ∈ V1, v ∈ V2, (u, v) ∈ F1 and f1(u, v) = 1}
∪ {{u, v} | u ∈ V1, v ∈ V2, (v, u) ∈ F1 and f1(v, u) = 0}

Note that every vertex with priority ≤ i that is matched in M1 is also
matched in M2.

Next, the algorithm constructs a second flow problem X2 = (W2, F2).

W2 = V ∪ {s, t}
F2 = {(u, v) | u ∈ V1, v ∈ V2 and {u, v} 6∈M2}

∪ {(v, u) | u ∈ V1, v ∈ V2 and {u, v} ∈M2}
∪ {(s, v) | v ∈ V2 is matched and p(u) > i}
∪ {(v, t) | v ∈ V2 is unmatched and p(u) = i}

All edges are again assigned a capacity of 1. A maximum flow f2 on X2

defines a modified matching M3.

M3 = {{u, v} | u ∈ V1, v ∈ V2, (u, v) ∈ F2 and f2(u, v) = 1}
∪{{u, v} | u ∈ V1, v ∈ V2, (v, u) ∈ F2 and f2(v, u) = 0}

Observe that every vertex with priority ≤ i that is matched in M1 is also
matched in M3.

3



References

[1] Duan, Ran, Seth Pettie, and Hsin-Hao Su. “Scaling algorithms for ap-
proximate and exact maximum weight matching,” Computing Research
Repository (CoRR), abs/1112.0790, 2011.

[2] Edmonds, Jack. “Paths, trees and flowers,” Canadian Journal of Math-
ematics, 1965, pp. 449–467.

[3] Gabow, Harold N. “An efficient implementation of Edmonds’ algorithm
for maximum matching on graphs,” Journal of the Association for Com-
puting Machinery, 1976, pp. 221–234.

[4] Goldberg, Andrew V., Haim Kaplan, Sagi Hed, and Robert E. Tarjan.
“Minimum cost flows in graphs with unit capacities,” Symposium on
Theoretical Aspects of Computer Science (STACS), 2015.

[5] Hopcroft, John E. and Richard M. Karp. “An O(n5/2 algorithm for
maximum matching in bipartite graphs,” SIAM Journal on Computing,
1973, pp 225–231.

[6] Micali, Silvio. and V. V. Vazirani. “An O(
√
|V | · |E|) algorithm for

finding maximum matchings in general graphs,” IEEE Symposium on
the Foundations of Computer Science (FOCS), 1980, pp. 17-27.

[7] Ramshaw, L., and Robert E. Tarjan. “A weight-scaling algorithm for
min-cost imperfect matchings in bipartite graphs”. In IEEE Symposium
on the Foundations of Computer Science, pages 581590, 2012.

[8] Tarjan, Robert E. Data structures and network algorithms. Society for
Industrial and Applied Mathematics, 1983.

[9] Turner, Jonathan S. “Maximum priority matchings,” Washington Uni-
versity Computer Science and Engineering Department technical report,
wucs-2015-06, 2015.

4


