
Management and Service Discovery in

Satellite and Avionic Networks

Todd Sproull and John W. Lockwood

Department of Computer Science and Engineering

Washington University in Saint Louis

St. Louis, MO 63130 USA

{todd,lockwood}@arl.wustl.edu

John Meier

Boeing Corporation

Saint Louis, MO, 63166, USA

Email:john.l.meier@boeing.com

Abstract— Command and control services manage network-

attached assets deployed in distributed systems that can be

separated by thousands of miles. Networks that rely on satel-

lite communications to transit all data to a centralized con-

trol center are troubled by high latency due to long propa-

gation delays to satellites and limited data transit over band-

width constrained links. Low latency communications can be

achieved by using a combination of distributed airborne and

space-based systems. This research investigates how deploy-

ment of a Peer-to-Peer (P2P) overlay network in a region of

conflict can reduce the latency for real time control and com-

munication. This overlay network utilizes a hybrid of both

satellite and aircraft links to provide services that best sat-

isfy the immediate needs of ground units. Experiments have

been performed with an emulation testbed using 147 com-

pute nodes in the Emulab testbed to study the latency and

throughput of the overlay network. The overlay network is

developed using a Peer-to-Peer Application Programmers In-

terface (API) called JXTA. Nodes simulate resources request-

ing and offering several types of video and data services.

TABLE OF CONTENTS

1 INTRODUCTION . 1

2 RELATED WORK . 2

3 SYSTEM ARCHITECTURE . 3

4 EXPERIMENTATION . 4

5 FUTURE WORK . 10

6 CONCLUSIONS . 11

1. INTRODUCTION

Communication links transfer data between satellites, un-

manned airborne vehicles (UAVs), and devices on the ground.

UAVs are used to analyze pollution, relay communications

and host a variety of sensors. By providing data process-

ing services within the nodes of the hierarchical networks,

raw data can be locally and efficiently transformed into use-

This work was funded by a research grant from the Boeing Corporation.

1-4244-0525-4/07/$20.00/ c©2007 IEEE

IEEEAC paper# 1167, Version 4, Updated December 11, 2006

ful information. Overlay networks with super nodes placed

strategically in the hierarchical network enables traffic to be

effectively shaped and filtered.

Many centralized client/server architectures are used to pro-

cess the compute intensive applications. They channel infor-

mation between a centralized set of data processing and stor-

age nodes. Often, networked platforms (UAVs, and earth or-

biting satellites) are deployed thousands of miles away from

a central processing center. Even with caching, client/server

architectures are not well suited for network services in me-

dia intensive real time networks in dynamic mobile environ-

ments, due to changing topologies.

The latency and bandwidth constraints of long-distance com-

munication networks are a challenge for real time media and

data fusion applications. As more network devices are de-

ployed, it becomes increasingly difficult to use a centralized

processing center. Centralized architectures do not scale well

to handle large volumes of information, provide robustness

from failure, nor do they provide fast reaction times.

One service benefiting from distributed networks is the de-

ployment of robots to provide medical assistance for injured

soldiers. Research efforts such as the Trauma Pod [1] have

investigated ways to deploy remote medical services. With

telesurgery, surgeons perform operations on wounded sol-

diers using robots. Bandwidth intensive network applications

such as streaming video allow surgeons to perform many life-

saving operations from a remote location. The need for low

latency communication is crucial to increase responsiveness

to the remote surgeon during an operation.

Using distributed (rather than centralized) services to inter-

connect a diverse set of platforms increases scalability and

real time performance. Our research investigates the tradeoffs

in deploying a Peer to Peer (P2P) overlay network technol-

ogy as compared to a centralized client/server approach. The

architecture enables mobile devices to efficiently exchange

large volumes of information using new P2P services rather

than channeling all information through a central server.

1

In heterogeneous networks, messages can flow between mo-

bile devices on the ground, vehicles in the air, and satellites

in earth orbit. Overlay networks with content-based routing

services on P2P networks enhance real time decision mak-

ing for multi-tiered communications. Overlay network ser-

vices, such as content-based routing, to improve the Qual-

ity of Information (QoI) that flows between devices. Im-

proved QoI enables transmission of useful information using

minimal bandwidth. By using P2P services, mobile devices

can communicate with less latency and bandwidth than they

would using a centralized system.

Distributed services running on P2P networks enhance infor-

mation rendezvous rates while reducing latency of informa-

tion exchange. P2P establishes efficient overlays to enable

content based routing. Overlays in P2P networks decrease

routing time for advanced multi-tiered communications. The

three tiers of communication (space, air, and ground) must

seamlessly integrate low latency services on multiple plat-

forms using overlays to provide scalable real time network

services. Long-distance links between geosynchronous satel-

lites and moving vehicles such as UAVs require a highly dy-

namic network environment.

UAVs like the Shadow fly at around 5000 feet while low-

flyers such as the Dragon Eye and Honeywell MAV operate

at 100’s of feet. The bandwidth between these heterogeneous

nodes scales logarithmically as the altitude increases. P2P

technology is used by the highly dynamic ad hoc networks

to improve reaction times in a service-oriented architecture

(SOA).

Adhoc networks use overlays to improve neighbor node dis-

covery, user authentication, and tunneling of sensitive data.

Once set up, the overlay network facilitates discovery of ad-

ditional nodes with minimum reaction time. The P2P API

JXTA facilitates discovery of distributed services [2].

Our research utilizes distributed P2P networks with an over-

lay to reduce latency and maximize use of available network

bandwidth. In this work, we measure the network metrics

of the network latency and bandwidth as a function of the

configuration of the network. We also measure an addi-

tional Measurement of Performance (MOP) to characterize

the number of successful requests for P2P services. Specif-

ically, we measure the MOPs for four services: transfer of

streaming target tracking data (40 Kbps), still image transfer

(100 Kbytes), streaming video (700 Kbps), and sensor query

data (10 Kbyte).

We perform experiments using the emulation testbed labora-

tory, EMULAB [3]. Our experiments use up to 147 PCs to

study link costs and we compare the overlay network against

traditional client/server models of tasking resources.

The nodes distribute resource request messages using multi-

cast communication and rendezvous nodes (also referred to

as super nodes). There were significant challenges to inter-

connecting and managing a diverse set of mobile platforms,

network nodes, and end systems with multicast.

A super node is a server, router, switch or other network de-

vice that has more memory, bandwidth, processing power, or

better locality than other nodes in the P2P network. Super

nodes reduce the need for multicast traffic and P2P chatter

by serving as a rendezvous point for nodes deployed in the

network.

Super nodes implemented with reconfigurable hardware, such

as the Field Programmable Port Extender (FPX) [4], improve

data processing services for applications in the network, en-

force Quality of Service for Voice, transport Voice over IP

(VoIP), and transcoded video.

The structure of this paper is now described. Section II dis-

cusses related work in the area of P2P networks. The overall

system architecture is described in Section III. Section IV dis-

cusses the experiment and presents results from running on

Emulab. Section V discusses future work with large testbeds

and Section VI concludes our findings.

2. RELATED WORK

Today’s adhoc networks support a diverse set of services that

require different priorities and different allocations of band-

width for traffic delivery. P2P topologies are scalable to meet

the needs of hundreds, thousands, and even tens of thousands

of users [5].

Overlay trees help P2P networks optimize the use of band-

width by minimizing the overhead required to find peer

servers [6]. In the related work of file sharing, it was found

that the choice of which peer to use in the overlay had a large

impact on performance. Picking the correct peer doubles the

media file sharing capability in certain cases.

Simulations, such as p-sim, have shown how adaptive P2P

topologies reduce latency in overlay links [7]. Past work fo-

cused on how the application benefited from a P2P deploy-

ment rather than measure the peer dynamics, performance of

file sharing and searching, or work load of search queries.

Several network simulators provide some support for large

scale P2P network experiments. P2PSim [8] is a discrete

event simulator that models overlay networks such as Chord

[9] and Tapestry [10]. These P2P implementations are cre-

ated by P2PSim and do not model all of the features of these

protocols [11]. PeerSim [12] is another example of a P2P net-

work simulator. It provides support for super node topologies

similar to our deployment strategy. Unfortunately, it does not

model the network transport but, it does scale to large (1000’s

of nodes) networks. PeerSim utilizes it’s own P2P protocols

to simulate node behavior. This makes it difficult to com-

pare to the well studied and academic P2P protocols such as

[9]. As with other network simulators, both of these software

2

tools provide some of the functionality necessary to create

realistic network experiments but, lack the flexibility and re-

alism gained through an emulation testbed.

The use of redundant super-peers (also know as super nodes)

improves the performance of P2P networks. Guidelines have

been developed that suggest how to make best use of re-

dundant nodes. Careful use of super-peer redundancy is

needed to handle large aggregate processing loads at bottle-

neck nodes [13].

3. SYSTEM ARCHITECTURE

The network architecture of our system is shown in Figure 1.

A high-level view of a modern ad hoc network is shown and

the amount of delay associated with requesting services from

a remote location is indicated by thickness of the lines.

Consider the requests of a soldier who needs to monitor a

live video feed from a nearby hostile environment. Using

traditional communications topologies, the request is sent to

a high flying UAV which communicates with satellites and

transmits the request to the remote command center poten-

tially thousands of miles away. Once the request is granted,

the video travels back to the command center and is finally

retransmitted to the soldier as shown in Figure 1. This trans-

mission path delays video to the user and increases bandwidth

consumed in the network.

Figure 1. High level view of services in current ad hoc net-

works

Instead of using a centralized set of resources physically lo-

cated farther away from the edge, the new architecture pro-

posed in this paper (shown in Figure 2) uses a local set of ser-

vices. We push the services and discovery mechanisms into

the network. Unlike the traditional topology, the video re-

quest is routed from the UAV to the destination service. This

approach eliminates large latency delays and bandwidth costs

associated with providing these services to a remote location.

Figure 2. High level view of deploying services in ad hoc

networks

Network Architecture

We created a model of a node to realistically emulate the pro-

cess of discovering and requesting services in a delay and

bandwidth-constrained network. The model consists of a Java

application executing on a node in a testbed. Two different ar-

chitectures are evaluated to facilitate the discovery and adver-

tisement of services. The first architecture is a client/server

and the second is a P2P architecture.

Client/Server Architecture—The client/server approach mim-

ics communication in traditional ad hoc networks. Most com-

munication passes through a central server or group of servers

hosting services that route traffic to destinations. Clients reg-

ister with the server before requesting services. During the

registration process, clients transmit their physical location,

unique node ID, and their IP address to the server. The server

then routes the requests to the appropriate resources.

Peer to Peer— The P2P architecture uses an unstructured

P2P topology built with the JXTA API. This API provides

a mechanism for the discovery and advertisement of services

and creates a secure overlay group of nodes. An initial im-

plementation utilizes multicast to communicate between the

nodes. An enhancement to this overlay involves the use of

rendezvous nodes (super nodes). The use of multicast can

lead to a large increase in network traffic. Super nodes, how-

ever, create structure in the overlay that reduces traffic. Reg-

ular nodes connect to super nodes to forward service adver-

tisements and route service requests. Super nodes create a

hierarchical topology by communicating amongst themselves

and with the regular nodes directly connected to them. Nodes

bootstrap by either broadcasting to discover the P2P group

topology or by communicating with an initialization node.

After bootstrapping, the node then attempts to join the group.

Once authorized to join, the new node announces its physical

location and it announces the services that it offers. Requests

for services are then issued by the node through multicast or

communication to a super node. If the service is found, the

nodes establish an IP socket connection to transfer the data.

3

Client/Server with Caching— One optimization for the

client/server architecture is the use of caching node adver-

tisements in the network itself. This is similar, though with

reduced functionality, to the use of super nodes. A caching

node would provide some benefit to the client/server architec-

ture when nodes are static. However, we envision nodes con-

tinuously moving from location in the grid to the next thus in-

validating the cached values. The P2P approaches work well

is this scenario by publishing the service advertisements to a

super when the node relocates. If the client/server architec-

ture sent update information to a caching node and queried it

directly we would argue that it is in effect a P2P architecture

and not a client/server with caching.

Node Architecture

Services Offered— We model a node that uses four types

of services. The first type of service is for a high band-

width, constant bit-rate, User Datagram Protocol (UDP)

video stream that has a bandwidth of approximately 700 kbps.

The second service is a low-bit rate service that uses UDP to

send coordinate and sensor information with a bandwidth of

approximately 40 kbps. The third service models an aerial

camera which transmits 100kbyte images using the Trans-

mission Control Protocol (TCP). The final service transmits

10 kbyte sensor queries using the TCP protocol. Nodes ran-

domly select a service based on the distribution listed in Table

1.

Video Track Image Sensor Idle

10% 45% 10% 25% 10%

Table 1. Distribution of services for each node

Implementation of Nodes in the Overlay Network

In our experiments, nodes both request for and provide ser-

vices. All nodes request and offer services for a fixed amount

of time. A new service is requested once the previous service

completes or times out. After completing a service, nodes

either request another service or remain idle for one second

before issuing another request. When the time for an experi-

ment expires, the node completes all currently active services

before exiting the overlay.

Nodes are assigned an initial physical location in a grid with

specific coordinates on an (x,y) grid. Services are requested

from and to specific locations. For example, a node at overlay

position (32,53) might request a video stream from location

(27,92).

Overlay Software—The software that establishes the overlay

network was written in Java using approximately 2000 lines

of code. The client/server portion of the code utilized Java

Sockets for all communication. The P2P portion was imple-

mented with JXTA 2.3.5 and unidirectional JXTA pipes to

send and receive messages. In both implementations, each

node created multiple Java threads to concurrently request

and respond to services. Service locations were randomly

distributed and the type of service requested is based on the

distribution listed in the Table 1.

4. EXPERIMENTATION

Experiment Setup

In order to emulate a multi-tiered communication network,

a large testbed was needed. Emulab was chosen since it is

the one of largest academic testbed available. Emulab allows

machines to be allocated, a network to be created, and experi-

ments to be conducted in a way that is reproducible. The cur-

rent testbed consists of 365 PCs, of which a subset of nodes

can be allocated to perform experiments. Emulab provides a

web interface to configure experiments and allows for admin-

istrative control of each node. After an experiment is run, a

script is executed to collect statistics about the operation of

the experiment and to report the number of successful service

transactions, average latency per service and bandwidth uti-

lization. Each experiment lasted approximately 15 minutes.

Two different types of topologies were deployed using Emu-

lab. The first was a star topology with each node connecting

to a central switch. The star topology was used to investigate

how well the applications perform in an idealized environ-

ment. All of the experiments with this topology utilized the

pc3000s Emulab nodes which are 3GHz, 64-bit Xeon proces-

sors equipped with 2 GBytes of RAM. This equipment min-

imizes the effects of the computing hardware relative to the

network under test.

The second topology is hierarchical configuration with vary-

ing link delays and bandwidth constraints. The hierarchical

network provides more a more realistic deployment scenario

with models for different types of nodes requesting services at

various rates. Due to the size these experiments a mix of Em-

ulab hosts were deployed ranging from Pentium 3 850MHz

PCs to the 3GHz Xeon nodes. In general, the fastest nodes

available were deployed, giving a higher priority to assigning

the server and super nodes with the most capable machines.

Effects of Latency and Bandwidth

Several experiments were conducted to measure how latency

and bandwidth constraints affected the performance of the

client/server architecture. The experiments measured perfor-

mance in terms of the number of successfully completed ser-

vice operations. In order for a node to complete a successful

service, it must locate the service, request use of the service,

and finally transfer the data associated with the service.

Bottleneck Link to the Server—The first experiment measured

the total number of services completed as a function of in-

creasing latency between the performance-critical connection

to the server. This experiment used a star topology of 11

nodes (10 overlay nodes plus 1 server node) configured with

a fixed, 100ms latency between nodes and variable latency

to the server, as displayed in Figure 3. Figure 4 shows how

4

Figure 3. View of the 11 node star topology

the number of successful service requests decreased as the

latency increased. The P2P architecture, which does not uti-

lize the bottleneck link, performs better than the client/server

architecture when the delay constrained server link becomes

large. We found that once the delay to the server exceeded

approximately 200ms, the P2P architecture delivers more ser-

vices than the client/server architecture. In the client/server

architecture, all communication is routed from a client to the

server then to another client. The performance of the client-

server architecture depends on the proximity of the clients to

the server as well as the bandwidth of the links. This limits

the scalability of the client/server architecture.

 0

 200

 400

 600

 800

 1000

 1200

 0 200 400 600 800 1000

S
u

c
c
e

s
s
fu

l
S

e
rv

ic
e

s

Latency at Bottleneck Link (ms)

Client/Server
P2P

Figure 4. Number of successful services for the client/server

architecture as bottleneck link increases. The 1 super node

P2P architecture is also shown as a reference

In the next experiment, we deployed the same 11 node star

topology as before. However, we set the propagation delay of

the bottleneck link to a constant then varied the bandwidth.

This experiment allowed us to parameterize link bandwidth

for a variety of client/server architectures with a P2P ap-

proach using a fixed latency (50ms) on every link. From Fig-

ure 5, we observe that the P2P architecture completed more

services in a fixed period of time then the client/server once

the bandwidth to the server dropped below 50 Mbits/sec.

 100

 200

 300

 400

 500

 600

 700

 800

 0 20 40 60 80 100

S
u

c
c
e

s
s
fu

l
S

e
rv

ic
e

s

Bandwidth at Bottleneck Link (Mbits/sec)

Client Server
P2P

Figure 5. Number of successful services as the bandwidth

is reduced for the client/server architecture on the bandwidth

constrained link. The 1 super node architecture is provided as

a reference

Overhead associated with P2P API

A P2P solution adds additional overhead when compared to

a client/server architecture for discovery and communication

of services. This section describes the amount of overhead

that is inherent to the P2P architecture. The P2P overhead is

calculated per service by the use of a separate port used for

all P2P communication. The first experiment utilized three

nodes to calculate the per service overhead from a sender to

a receiver communicating through a Super Node. All com-

munication between the sender and receiver was captured us-

ing tcpdump. Filters were applied to the output of tcpdump

to analyze traffic by IP address and port number. The per

service overhead includes the overhead introduced by JXTA

using XML messages to establish a handshake between two

nodes and push out the service. Table 2 lists the percentage

of traffic that consists of service, and the overhead, with the

rest consisting of background traffic on the LAN. In this ta-

ble, the 700 Kbit/sec service creates more total traffic than

the 40 Kbit/sec service which accounts for the difference in

percentage of overhead traffic.

Service Type Service % Overhead %

700 Kbps UDP Video Stream 94.5 % 5.0 %

40 Kbps UDP Track Stream 51.7 % 48.3 %

100 Kbyte TCP Image Transfer 96.3 % 3.7 %

10 Kbyte TCP Sensor Reading 71.7 % 28.3 %

Table 2. Percentages of traffic associated with the service

and the P2P overhead in terms of total bandwidth

Table 3 presents the amount of overhead traffic per successful

service. Here the TCP and UDP services require roughly the

same amount of overhead traffic for the P2P service requests

and discovery, which is what we would expect. From the ta-

ble, in order to request a 100 Kbyte TCP Image, an additional

5

41 Kbytes is necessary to discover the service in the overlay

network and setup communication between the sender and

receiver.

Service Overhead (Kbytes)

700 Kbps UDP Video Stream 48

40 Kbps UDP Track Stream 48

100 Kbyte TCP Image Transfer 41

10 Kbyte TCP Sensor Reading 40

Table 3. Average overhead in bytes per successful service

Network Scalability

Larger experiments were performed to evaluate how well the

P2P and client/server architectures scale. These experiments

evaluated the many successful services completed within a

fixed period of time as a function of network topologies which

had differing sizes. The latency per service and bandwidth

utilized per node were measured. In these experiments, a star

topology was utilized as a reference that had a fixed latency

and bandwidth between each node.

We conducted experiments using 11, 26, and 51-node con-

figurations. The topologies required 17, 39, and 77 Emu-

lab nodes, respectively. Traffic is routed through additional

PCs to emulate the desired link characteristics for latency and

bandwidth. Each network link incurred a latency of 50ms be-

tween the node and central switch. The link to the remote

server was assigned a delay of 125ms. This latency mod-

eled the penalty for accessing a distantly remote server in the

client/server architecture. The bandwidth for each link was

set to 100 Mbit/sec.

Several different types of architectures were explored in this

scenario. The first architecture used a client/server approach.

The next four architectures used a P2P overlay. The first P2P

overlay used multicast, the next two used one and two super

nodes, and finally we deployed a configuration with one super

node in addition to multicast.

Figure 6 reports the number of successful services completed

as the topologies increase in size. The number of successful

services was computed as the sum of total successful services

completed on each node. The approach with only the super

node provides the best performance for the larger node exper-

iments. Using multicast with one super node performs fairly

well for the small to medium sized experiments. A multicast

only approach is useful with the smaller sized nodes, but as

the network increases in size, the performance starts to de-

cline because of the large amounts of traffic created on the

network. The client/server architecture performs worse than

the P2P approaches.

An additional metric to evaluate the different architectures is

measuring the amount of traffic created on the network for

each experiment. This is measured in terms of total traffic

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 10 15 20 25 30 35 40 45 50

S
u

c
c
e

s
s
fu

l
S

e
rv

ic
e

s

Number of Nodes

Client/Server
Multicast

1 Super Node
2 Super Nodes

Multicast + 1 Super Node

Figure 6. Successful number of services as the star topology

increased in size. The multicast architecture outperforms the

other approaches, with the combined super node and multi-

cast configuration leading the remaining options

(Mbytes) and traffic per successful service (Mbytes/service).

Figure 7 illustrates the total traffic generated by each ex-

periment for a given topology. The results were obtained

from reading switch counters before and after each experi-

ment. From the figure, the multicast P2P approach creates

the largest amount of traffic with increasing node sizes. The

super node and multicast combination generates the second

highest amount of traffic. This is no surprise due to the simple

star topology and multicast sending service queries to each

node, essentially broadcasting in this configuration.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 10 15 20 25 30 35 40 45 50

S
u

c
c
e

s
s
fu

l
S

e
rv

ic
e

s

Number of Nodes

Client/Server
Multicast

1 Super Node
2 Super Nodes

Multicast + 1 Super Node

Figure 7. Total network traffic as the star topology increased

in size with the multicast configuration demonstrating how

poorly it scales in a star topology with larger number of nodes

The traffic per successful service is shown in Figure 8. Again,

the multicast only approach is the most expensive in terms of

bandwidth, requiring over 17 Mbytes per service completed.

The super node P2P and client/server experiments require

around 1 Mbyte per service.

6

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 10 15 20 25 30 35 40 45 50

B
a

n
d

w
id

th
 (

M
b

y
te

s
)

p
e

r
S

u
c
c
e

s
s
fu

l
S

e
rv

ic
e

Number of Nodes

Client/Server
Multicast

1 Super Node
2 Super Nodes

Multicast + 1 Super Node

Figure 8. Network traffic per successful service as the star

topology increased in size, with the multicast configuration

providing the most expensive service per megabyte solution

The next statistics reported are the latencies associated with

each service. Figures 9, 10, 11, and 12 measured in millisec-

onds the latency associated with each service. The latency for

the UDP streams was measured from the time that the client

requested the stream to the time when the client received the

first byte of data. The TCP latency was measured as the time

when the data transfer was complete.

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 10 15 20 25 30 35 40 45 50

L
a

te
n

c
y
 (

m
s
)

Number of Nodes

Client/Server
Multicast

1 Super Node
2 Super Nodes

Multicast + 1 Super Node

Figure 9. 700 Kbps UDP Stream Latency as the star topol-

ogy increased in size. The client/server and multicast config-

urations do not scale well with larger sized topologies

The latency experiments can be divided into two groups, the

UDP services and the TCP services. The multicast architec-

ture was actually slower than the client/server in the 40 Kbps

UDP stream. This is due to the amount of traffic generated

from each node searching every node in the overlay for a par-

ticular service. Deploying super nodes eliminates that prob-

lem by caching service advertisements for nodes utilizing that

super node. In the TCP services the latencies for the P2P ap-

proaches were around 2-3 times faster than the client/server

model. With the UDP stream services offering around a 30%

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 10 15 20 25 30 35 40 45 50

L
a

te
n

c
y
 (

m
s
)

Number of Nodes

Client/Server
Multicast

1 Super Node
2 Super Nodes

Multicast + 1 Super Node

Figure 10. 40 Kbps UDP Stream Latency as the star

topology increased in size, again the multicast configuration

demonstrates a sharply raising latency for the larger topolo-

gies

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 10 15 20 25 30 35 40 45 50

L
a

te
n

c
y
 (

m
s
)

Number of Nodes

Client/Server
Multicast

1 Super Node
2 Super Nodes

Multicast + 1 Super Node

Figure 11. 100 Kbyte TCP Transfer Latency as the star

topology increased in size, with the client/server configura-

tion unable to scale as well as the P2P architectures

decrease in latency to discover the service. Excluding the

multicast case, as networks grow larger than 90 nodes both

types of services will benefit even more from the P2P archi-

tecture, especially applications transferring large amounts of

data.

Hierarchical Network of Super Nodes

This section explores experiments deployed using a hierarchi-

cal network topology. In this tree topology, super nodes were

placed at various locations near the root of the tree. This net-

work includes a range of bandwidths and link delays with 1

Mbps links on the low flying nodes, 10 Mbps at the Tactical

UAVs and 100 Mbps between high flying (X-45) nodes [14].

Delays between links are fixed at 40ms, 40ms, and 20ms for

the Low Flying UAV, Tactical UAV and X-45 respectively.

The delay link to the server in the client/server architecture

7

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 6500

 10 15 20 25 30 35 40 45 50

L
a

te
n

c
y
 (

m
s
)

Number of Nodes

Client/Server
Multicast

1 Super Node
2 Super Nodes

Multicast + 1 Super Node

Figure 12. 10 Kbyte TCP Transfer Latency as the star topol-

ogy increased in size. The client/server performs better in this

smaller file transfer size, however not at the smaller latencies

of the P2P architectures

was set to 600ms. The 600ms delay is a result of the prop-

agation time and queuing that takes place over a multihop

satellite link or a wireless to ground infrastructure similar to

[15]. The two common methods currently used to route video

to a centralized remote set of processors are directly through

a satellite (Figure 1) or relayed to a ground station complet-

ing the path through the internet. The latency experienced by

the satellite is usually greater than 600 ms because the prop-

agation delay to a geostationary satellite (250 ms), the relay

and switching delay to a secondary satellite (250 ms) plus the

jitter (100 ms) from the multiplexing and encoding comprise

the 600 ms latency. The jitter is due to the multiplexer, modu-

lator, coder, switch, decoder, demodulator and demultiplexer.

The use of technology such as Turbo Code provide substan-

tial improvement in error correction however increases jitter

due to the large block size required during encoding and de-

coding. The hierarchical topologies consisted of 11, 31, 54,

75, and 92 nodes in the overlay. The total number of Emulab

hosts required to support these experiments ranged from 19

PCs in the 11 node example up to 147 in the 92 node exam-

ple. Again, this large increase is due to the additional nodes

responsible for bandwidth and delay constraints placed be-

tween links.

Three different distribution types are simulated at various lev-

els of the hierarchy. Table 2 lists the assumed distribution of

services.

In order to better exploit the locality of the services, an as-

sumption is made regarding the types of requests issued by

the Low Flying UAV nodes. This assumption is that requests

are only issued to nodes one hop away, or in the same sub-

net. This assumption is fairly reasonable given the fact that

services are most valuable to the nodes closest to them. No

restriction is placed on the Tactical and X-45 nodes, permit-

ting requests for any node in the topology. These assumptions

Figure 13. High level view of 92, 75, 54, 32, and 11 node

hierarchical topologies

Figure 14. View of 11 node hierarchical topology

allow the low flying nodes near regions of interest access to

those important services and a global service request scheme

for the high flying nodes (Tactical and X-45).

In these experiments multicast was not deployed. With multi-

cast enabled, nodes between routers are unable to communi-

cate with each other in Emulab. Instead, three super nodes are

deployed to investigate the benefits of increasing the number

of super nodes.

Results—This section presents the results of the hierarchical

topologies. Figures 15, 16, 17 report the successes, band-

8

video track image sensor idle

Low Flying UAV 10% 45% 10% 25% 10%

Tactical UAV 25% 25% 25% 5% 20%

X-45 40% 5% 20% 5% 30%

Table 4. Distribution of different nodes in hierarchical

topology

width, and bandwidth per service respectively. Figures 18,

19, 20, and 21 report the individual service latencies.

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 10 20 30 40 50 60 70 80 90 100

S
u

c
c
e

s
s
fu

l
S

e
rv

ic
e

s

Number of Nodes

Client/Server
1 Super Node

2 Super Nodes
3 Super Nodes

Figure 15. Successful number of services for localized com-

munication hierarchical topologies

The number of successful services scales well in P2P ar-

chitectures. The P2P nodes perform almost twice as many

services as the client/server in the largest experiment. The

client/server experiences an initial decrease in bandwidth per

service due to the difference in topologies between the 11,

32, and 54 node experiments. The 54, 75, and 92 node ex-

periments share a similar structure with an increase in total

nodes at the edges.

The P2P architectures generate more total traffic as the

topologies increase in size, however the number of services

completed is also greater. It is important to note the rising

costs of services per MByte in the client/server model in Fig-

ure 17 with larger experiments. The costs for the one su-

per node example remains fairly stable even for larger experi-

ments which is very encouraging for building larger systems.

The bandwidths fluctuate for the two and three super node

examples in the larger node topologies, however the costs are

always considerably less than the client/server case.

The client/server model performs at 2-5 times the latency of

the P2P architectures, depending on topology size and the ser-

vice. In the 10KByte TCP transfer, Figure 21 the client/server

approach increases by 17% moving 75 to 92 nodes, compared

to the 1% increase experienced by the single super node P2P

example.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 10 20 30 40 50 60 70 80 90 100

T
o

ta
l
N

e
tw

o
rk

 B
a

n
d

w
id

th
 (

M
b

y
te

s
)

Number of Nodes

Client/Server
1 Super Node

2 Super Nodes
3 Super Nodes

Figure 16. Total network traffic for hierarchical topologies

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 10 20 30 40 50 60 70 80 90 100

B
a

n
d

w
id

th
 (

M
b

y
te

s
)

p
e

r
S

u
c
c
e

s
s
fu

l
S

e
rv

ic
e

Number of Nodes

Client/Server
1 Super Node

2 Super Nodes
3 Super Nodes

Figure 17. Network traffic per successful service for hierar-

chical topologies. The client/server approach requires more

bandwidth for all sized topologies with a rising trend in the

largest experiments

Use of Super Nodes

From the results, the addition of more than one super node

does not necessarily improve performance on all topologies.

Strategic location of the super node will impact the effec-

tiveness of the P2P technology. For the larger experiments

though, performance improvements were demonstrated when

slower nodes were deployed in Emulab. For example, in the

92 node hierarchical, using a Pentium 3 850MHz PC proved

inadequate acting as a super node for the other 91 nodes in

the overlay. The bottleneck was simply the JAVA applica-

tion consuming 99% of the CPU due to the overhead as-

sociated with handling service requests for a large number

of nodes. When deploying additional super nodes to divide

the load however, the number of successful experiments in-

creased considerably.

The second benefit provided using additional super nodes is

redundancy. When a super node fails in the P2P examples,

9

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 10 20 30 40 50 60 70 80 90 100

L
a

te
n

c
y
 (

m
s
)

Number of Nodes

Client/Server
1 Super Node

2 Super Nodes
3 Super Nodes

Figure 18. 700Kbps UDP Stream Latency for hierarchical

topologies. The P2P architectures discover services at least

twice as fast as the client/server

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 10 20 30 40 50 60 70 80 90 100

L
a

te
n

c
y
 (

m
s
)

Number of Nodes

Client/Server
1 Super Node

2 Super Nodes
3 Super Nodes

Figure 19. 40Kbps UDP Stream Latency for hierarchical

topologies. The P2P architectures service latency outper-

forms the client/server in requesting the UDP data stream

the additional super nodes continue to operate to provide ser-

vices. Each additional super node is capable of distribut-

ing resolving queries for every node in the network. In the

client/server model, a failed server or bottleneck link will

completely disrupt the use of services. Initial placement of

the super nodes indicates two hierarchial levels from the edge

is optimal.

Benefits of Emulation

Current P2P network simulators [8][12] lack the realism

found in an actual implementation of all the P2P protocol’s

unique behavior. For example, with emulation, we are able to

evaluate with greater confidence than a simulator, the latency

required to complete a service. Also, with emulation more

practical issues are exposed such as the amount of CPU pro-

cessing necessary for a super node for support 100 nodes in a

distributed environment.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 10 20 30 40 50 60 70 80 90 100

L
a

te
n

c
y
 (

m
s
)

Number of Nodes

Client/Server
1 Super Node

2 Super Nodes
3 Super Nodes

Figure 20. 100 Kbyte TCP Transfer Latency for hierarchical

topologies. The client/server architecture continues to rise at

an increasing rate for the largest experiments

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 10 20 30 40 50 60 70 80 90 100

L
a

te
n

c
y
 (

m
s
)

Number of Nodes

Client/Server
1 Super Node

2 Super Nodes
3 Super Nodes

Figure 21. 10 Kbyte TCP Transfer Latency for hierarchi-

cal topologies with the P2P latencies scaling very well with

larger topologies

One early result which came from the emulation and arguably

would have came from a JXTA P2P network simulator (if it

existed) was the importance of locality in nodes requesting

services. When an arbitrary node requesting from any given

neighbor the latency was almost as large as the client/server

architecture. Making the assumption that most low flying

nodes are generally interested in services from nearby nodes

substantially increased the number of services completed and

decreased the per service latency.

5. FUTURE WORK

In order to provide more realistic experiments with heteroge-

neous nodes, we plan to run experiments on the Open Net-

work Laboratory (ONL). ONL contains Field Programmable

Port Extenders (FPXs) [4] and Smart Port Cards (SPCs)

[16] that perform router plug-in functions. Integrating the

ONL [17] programmable hardware into larger scaled net-

10

work testbed simulations such as Emulab and Deter [18], is

also planned to assess scalability and security of the network.

ONL experiments will measure improvement to efficiency us-

ing redundant super nodes. Distributed network management

schemes will also be evaluated to program network hardware,

select the queuing strategies, and dynamically adjust policies

based on real time monitoring of the network conditions in a

live demonstration.

We will investigate QoS deployed throughout the network in

both ONL and Emulab. In ONL hardware and software QoS

will be deployed as an underlying network service to support

higher priority traffic flows. Tradeoffs will investigate the ef-

fects of deploying the service in software or hardware and the

compute resources required to provide various levels of ser-

vice. The intersection of QoS policy management and secu-

rity policy management will be explored using reconfigurable

computing. With QoS deployed in key locations of the net-

work, dynamic policy management will provide greater uti-

lization of high priority resources.

Other future work will investigate adding more super nodes

closer to the highest concentration of nodes. Also, we will

deploy multicast when communication is most likely to oc-

cur within a small group. Tradeoffs exists between traversing

long latency paths to discover services versus sending out a

multicast request when the service is nearby. Ultimately, us-

ing the anticipated location of a service provider to decide

wether to query a super node or issue a multicast request.

Additional considerations for loss within a wireless network

will also be explored. Currently, packet losses are fairly in-

frequent due to the reliable links. However, Emulab does of-

fer drop link probabilities for these links. It is expected that

both the client/server and P2P architectures performance will

degrade with these modified links. The client/server architec-

ture will be impacted the most though, due to the additional

hops to the communicate with the server.

Finally, we will investigate the placement and behavior super

nodes to reduce the use of multicast, improve response time,

reduce overhead, and increase the success rate for services

in a mobile environment. We intend to use P2P technology

to help create a deterministic, hardware and software infras-

tructure that is tolerant to faults and optimized for improved

communications. Super nodes are used to establish more effi-

cient coordination and communication between nodes. Super

nodes implemented with reconfigurable hardware can also

perform improved data processing services for applications in

the network to enforce better QoS. We intend to validate our

operational concepts using ONL programmable hardware in

our scalable network testbed simulations. The software solu-

tion will be evaluated using wireless mobile ad hoc hardware

in a real environment to verify the emulated results.

6. CONCLUSIONS

A continuum exists between client/server and peer-to-peer ar-

chitectures. By deploying super nodes that communicate with

P2P protocols, it is possible to reduce latency and increase the

number of services supported in a multi-tiered network. Ad

hoc networks need network wide services that discover neigh-

boring nodes, advertise services, and authenticate nodes. We

compare how applications using these services run using a

peer-to-peer overlay network versus a traditional client/server

architecture. Pure client/server architectures have poorer per-

formance for very large distributed networks as compared

to the P2P architecture. Even a caching client/server model

would lack the ability to perform well in the presence of mo-

bile nodes.

The instantiation of multiple services throughout the network

reduce path delays between clients in an overlay network.

Distributed services dramatically improve the performance of

the geographically diverse set of resources (nodes). Lower

latency access over limited bandwidth links to the requested

service improves the success rate and reduces the overhead.

A 2-5x reduction in latency, using with half the amount of

bandwidth per service was shown with EMULAB.

Experiments performed using EMULAB demonstrated that

P2P networks with super nodes can achieve provided excel-

lent MOPs using real hardware and software. We assessed the

improvement in effectiveness using link metrics mentioned

above and service metrics. More dynamic, intelligent band-

width management using distributed services can program

network hardware, arbitrate multi-level security, select queu-

ing strategies and dynamically adjust policies. Optimal use

of limited bandwidth requires using real time monitoring of

the network conditions.

P2P architectures enhance service distribution in ad hoc net-

works by reducing latency and improving bandwidth utiliza-

tion. Even with a relatively small number of nodes, a P2P ap-

proach is able to provide more services than the client/server

architecture as latency increases and bandwidth decreases.

As the size of the network increased, the P2P approach pro-

vides almost twice as many services in the same amount of

time as compared to the client/server. In addition to the in-

creased number of services, the per service bandwidth and

latency costs are also reduced. The baseline client/server per-

formance provided a good metric to determine the value of in-

serting P2P technology in mobile ad hoc networks. Through

distributed services and super nodes, networks of the future

can be more effectively utilized and service more requests in

less time.

REFERENCES

[1] “Trauma pod.” http://www.darpa.mil/DSO/-

thrust/biosci/traumpod.htm.

[2] L. Gong, “Jxta: A network programming environment,”

IEEE Internet Computing, vol. 5, no. 3, pp. 88–95,

11

2001.

[3] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Gu-

ruprasad, M. Newbold, M. Hibler, C. Barb, and

A. Joglekar, “An integrated experimental environment

for distributed systems and networks,” in Proc. of the

Fifth Symposium on Operating Systems Design and Im-

plementation, (Boston, MA), pp. 255–270, USENIX

Association, Dec. 2002.

[4] J. W. Lockwood, “An open platform for development

of network processing modules in reprogrammable

hardware,” in IEC DesignCon’01, (Santa Clara, CA),

pp. WB–19, Jan. 2001.

[5] B. Doshi, L. Benmohamed, and A. DeSimone, “A hy-

brid end-to-end qos architecture for heterogeneous net-

works (like the global information grid),” in Military

Communications Conference, Oct. 2005.

[6] T. Ng, Y. Chu, S. Rao, K. Sripanidkulchai, and

H. Zhang, “Measurementbased optimization techniques

for bandwidth-demanding peer-to-peer systems,” 2003.

[7] S. Merugu, S. Srinivasan, and E. Zegura, “p-sim: A

simulator for peer-to-peer networks,” mascots, vol. 00,

p. 213, 2003.

[8] “P2psim.” http://pdos.csail.mit.edu/-

p2psim/.

[9] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and

H. Balakrishnan, “Chord: A scalable peer-to-peer

lookup service for internet applications,” 2001.

[10] B. Zhao, L. Huang, J. Stribling, S. Rhea, A. Joseph, and

J. Kubiatowicz, “Tapestry: A resilient global-scale over-

lay for service deployment,” 2003.

[11] “Tools for peer-to-peer network sim-

ulation.” http://tools.ietf.-

org/irtf/draft-irtf-

p2prg-core-simulators-00.txt.

[12] “Peersim.” http://peersim.sourceforge.-

net/.

[13] B. Yang and H. Garcia-Molina, “Designing a super-peer

network,” icde, vol. 00, p. 49, 2003.

[14] J. Montgomery, “The orbiting internet fiber in the sky,”

BYTE, vol. 22, no. 11, pp. 58–72, 1997.

[15] G. Xylomenos, G. Polyzos, P. Mahonen, and M. Saara-

nen, “Tcp performance issues over wireless links,”

IEEE Communications Magazine, pp. 52–58, Apr.

2001.

[16] J. D. DeHart, W. D. Richard, E. W. Spitznagel, and D. E.

Taylor, “The smart port card: An embedded Unix pro-

cessor architecture for network management and active

networking,” Tech. Rep. WUCS-01-18, Applied Re-

search Laboratory, Department of Computer Science,

Washington University in Saint Louis, August 2001.

[17] J. DeHart, F. Kuhns, J. Parwatikar, J. Turner, C. Wise-

man, and K. Wong, “The open network laboratory,” in

SIGCSE ’06: Proceedings of the 37th SIGCSE technical

symposium on Computer science education, (New York,

NY, USA), pp. 107–111, ACM Press, 2006.

[18] T. Benzel, R. Braden, A. Joseph, K. Sklower, R. Os-

trenga, and S. Schwab, “Experience with deter:

A testbed for security research,” in Conference on

testbeds and Research Infrastructures for the Develop-

ment of Networks and Communities (TridentCom2006),

(Barcelona,Spain), March 2006.

Todd Sproull is a Doctoral Candidate

pursuing his DSc in Computer Engineer-

ing at Washington University in Saint

Louis. He is a Research Assistant and

member of the Reconfigurable Network

Group (RNG) at Washington University.

His interests include peer-to-peer over-

lay networks, reconfigurable computing

and network security. He has worked in the industry at Xilinx

Research Labs, Network Physics, and IBM. He earned a BS

degree in Electrical Engineering at Southern Illinois Univer-

sity in Edwardsville and an MS in Computer Engineering at

Washington University. He is a member of IEEE, Tau Beta Pi

and Eta Kappa Nu.

John W. Lockwood designs and im-

plements networking systems in recon-

figurable hardware. He leads the Re-

configurable Network Group (RNG) at

Washington University. The RNG re-

search group developed the Field pro-

grammable Port Extender (FPX) to en-

able rapid prototype of extensible net-

work modules in Field Programmable Gate Array (FPGA)

technology. He is an Associate professor in the Department of

Computer Science and Engineering at Washington University

in Saint Louis. He has published over 75 full-length papers in

journals and major technical conferences that describe tech-

nologies for providing extensible network services in wireless

LANs and in high-speed networks. Professor Lockwood has

served as the principal investigator on grants from the Na-

tional Science Foundation, Xilinx, Altera, Nortel Networks,

Rockwell Collins, and Boeing. He has worked in industry

for AT&T Bell Laboratories, IBM, Science Applications In-

ternational Corporation (SAIC), and the National Center for

Supercomputing Applications (NCSA). He served as a co-

founder of Global Velocity, a networking startup company fo-

cused on high-speed data security. Dr. Lockwood earned his

MS, BS, and PhD degrees from the Department of Electrical

and Computer Engineering at the University of Illinois. He is

a member of IEEE, ACM, Tau Beta Pi, and Eta Kappa Nu.

12

John Meier is a Boeing Technical Fel-

low in the Network Centric Thrust at

Phantom Works, NCO Thrust. He has

over 27 years of professional experi-

ence in avionic technology development

specifically working in the area of intel-

ligent networking, reconfigurable com-

puting architectures and wireless net-

work management. At Boeing, he is currently involved with

several key technical activities including a major project on

edge computing and intelligent distributed system manage-

ment. Mr. Meier earned his BS from Southern Illinois Uni-

versity - Carbondale (SIU-C), MS University of Missouri -

Rolla (UMR), and currently working on his PhD degrees from

the Department Computer Science Engineering (CSE) at the

Washington University in St. Louis. He is a member of IEEE

and Tau Beta Pi.

13

