
Evaluation of the Placement
of Network Services

Todd Sproull and Roger D. Chamberlain
Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, Missouri, USA

Abstract— Network services are used in the Internet today
for a variety of functionality, from Voice Over IP (VoIP)
relays to network game servers. Determining the place-
ment of these network services and measuring the quality
of the placement in realistic scenarios is a challenging
problem. This paper explores different methodologies for
evaluating the placement of network services. The strategies
include: simulations of with thousands of nodes, emulation
of different topologies with hundreds of nodes, and Internet
deployment for a diverse selection of nodes and network
communications. In addition, comparisons to a centralized
communication model are studied. This range of exploration
enables a better understanding of the impact the selection
of supernodes provides on a variety of applications and
platforms.

1. Introduction
Network researchers are faced with a range of challenges

when developing a new service or application. One of
these challenges is determining the proper set of evaluation
techniques for the new service. In order to fully evaluate any
new service, the process requires evaluation from different
perspectives and implementations. This process varies from
exploring the essential algorithms at the heart of the service
to deploying a full implementation running on the Internet.
Evaluating a new service across this field of implementation
options provides a deeper understanding along with valida-
tion of ideals and assumptions at different levels.

We break the assessment process down into three cat-
egories. First we have simulation. Here we consider dis-
crete event simulation models where the functional and
performance properties of a candidate Internet service are
being investigated. Second we have emulation. In emulation
physical (or virtual) nodes along with a physical (or virtual)
network exist in some constrained topology (such as Emulab
[1]) to provide a virtual sandbox for our service. Lastly we
consider experimentation as physical (or virtual) nodes and
networks on an Internet topology (such as PlanetLab [2]).

Typical computer science research first investigates a
simulation model, then builds a prototype to evaluate in emu-
lation and finally a full deployment through experimentation.
We are turning this model around. Here, we present an appli-
cation that can utilize our proposed service and demonstrate

improvement. Next, we evaluate the service itself through
experimentation with Planetlab. We then evaluate the service
on a constrained topology through emulation on Emulab.
Finally a variety of network topologies that we could not
deploy on are created and evaluated through simulation.

The network service we are evaluating is the Supernode
Placement in Overlay Topologies (SPOT) [3]. This research
leverages our initial work that proposed several placement
algorithms. In this paper we explore the service in more
detail and investigate it’s behavior using different techniques.
First, we will briefly discuss SPOT’s behavior. Next we
demonstrate the feasibility of SPOT as a service to determine
Internet game server placement. Then we investigate SPOT
with emulation and finally evaluate a simulator developed
for SPOT.

2. Background
Here we provide detail about the general behavior of

SPOT along with an example. A more complete explanation
can be found in [3]. SPOT selects a subset of network nodes
to be supernodes (SNs). A supernode is one that provides
additional services to the network. Consider a SN as the
game server node in a first person shooter game played on
the Internet or a relay node to assist in Voice over IP (VoIP)
communication. We now define the problem formally

2.1 Problem Statement
Consider a graphG = (V ,E) whereV are the nodes andE

represent links between the nodes. We define some subset of
V asVA, which are active sending message nodes. Of these
VA nodes we define a subsetVW that represent those nodes
that are willing to become SNs. We then defineVk as the
active nodes that are currently assigned as SNs, wherek is
the number of SNs we are interested in assigning. Therefore,
Vk ⊆ VW ⊆ VA ⊆ V .

We also define a demandt for some nodeu as t(u). The
shortest distance between nodesu andv is d(u, v). We are
interested in finding a set ofk nodes to be assigned SNs.
Therefore (from [3]) we want to determineVk such that

∀S ∈ 2VW , |S| = k → (
∑

u∈VA

t(u)d(u, Vk) ≤
∑

u∈VA

t(u)d(u, S))

(1)

We also define aTotalCost [3] for anyS where|S| = k

as the following:

TotalCost =
∑

u∈VA

t(u)d(u, S) (2)

This gives us a measurement of how well one selection
of SNs compares to another.

2.2 General Behavior
As the size of the network increases, calculating the

distances and demands to and from all nodes becomes ex-
pensive. In order to reduce the amount of communication re-
quired, nodes are divided into groups calledneighborhoods.
The size of the neighborhood is based on a predetermined
distance metricr from the current SN. Inside each of these
neighborhoods complete distance and demand information
is determined. As the SN assignment changes inside a
neighborhood, the center of the neighborhood refocusses on
the new SN. Therefore the members inside the neighborhood
may change after each assignment.

Nodes initially joining the network connect to a well
known bootstrap node for authentication and initialization.
Once authenticated, a node is either promoted to SN status
or provided the address of an SN to connect to. Each
is then notified by that SN if the node is close enough
to join the neighborhood. Those nodes not joining the
neighborhood locate the closest node in the neighborhood
to act as aneighborhood representative. A neighborhood
representative provides mechanisms for nodes outside the
neighborhood to influence the future assignments of SNs.
This is accomplished by the neighborhood representatives
aggregating demand from nodes outside the neighborhood
and representing it as their own. Where demand represents
the desire for a node to use the service and we are assuming a
demand of unity for each node. An example is now scenario
is now provided.

1

1

11
1

1

1

Node A

Node B

Node D

Node E

Node C
Neighborhood Rep

Neighborhood

Fig. 1: Example neighborhood with SN at node D and
neighborhood representative at node C with anr value of 3.

Figure 1 depicts a network with three nodes inside and two
nodes outside of a neighborhood. The nodes are connected
with routers (denoted as squares) and hop distances (denoted

as wires between nodes and routers). A distance of two
exists between Nodes A and B in Figure 1. Nodes willing
to become a SN are denoted with partially filled in circles
(nodes B, C, and E). The solid circle represents the current
SN (node D). Nodes that are active but choose not to become
the SN are represented with a plain circle (node A). In this
figure, the radius metricr=3, therefore nodes nodes C and E
are inside the neighborhood (with distances of 3 and 2 to the
SN, node D, respectively). Nodes A and B are too far from
the SN therefore placed outside the neighborhood, node A
is also not willing to become an SN (it is in the active state,
but not willing to become an SN) and would not join the
neighborhood even if it was close enough. This is because
any node not in the willing to become an SN state can not
join the neighborhood because all nodes in the neighborhood
must be eligible to become an SN. Nodes A and B must
find their closest neighborhood representative and will select
node C. With this topology, nodes A and B use node C
as their neighborhood representative, and node C reports a
demand of 3 to the SN, with node E reporting a demand
of 1. With the node demands and topology information for
nodes C, D, and E, the SN, node D, is ready to determine
if it will reassign the SN to a new location. To do this, the
SN solves the localk-median problem for three nodes with
the specified demand and topology information using integer
linear programming (ILP). In this example, the output of
the k-median problem assigns node C as the SN and the
neighborhood in Figure 2 is created.

1

1

11
1

1

Node A

Node B

Node D

Node E

1

Node C

Neighborhood

Fig. 2: Example neighborhood with SN at node C.

This SN placement strategy strikes a balance between
complete global knowledge and a very limited local view.
With local knowledge of the distance to each node and
associated demand, the SN is able to solve thek-median or
problem while not completely ignoring nodes outside of the
neighborhood by considering aggregate demand information.

2.3 Software Implementation

SPOT is written in 12000 lines of multithreaded Java code.
Each node initializes by listening on a well-known TCP
socket and forks a thread for each incoming command. In

order to solve the localk-medians problem the GNU Linear
Programming Kit (GLPK) [4] is utilized.

3. Experimentation
3.1 Introduction

The first type of evaluation is viaexperimentation. Here,
we are deploying the SPOT system on the Planetlab testbed.
This testbed consists of over 1000 nodes distributed around
the world. Each researcher is allowed access to aslice of
every single node in the network. This is very useful with
regards to the diversity of systems and networking environ-
ments. This type of environment increases the realism and
quality of experimentation greatly.

The test setup involved deploying SPOT on 50 nodes in
the Planetlab environment. The size of the experiment may
appear small, however due to the unpredictable nature of
Planetlab, hundreds of nodes are unavailable at any given
time.This number is also common with other researchers
working with distributed systems [5].

3.2 Planetlab Evaluation
The initial experiments on Planetlab involved collecting

statistics about the nodes. In Figure 3 the cumulative distri-
bution function is provided for the number of hops necessary
to reach all of the nodes.

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Number of Hops to Destination

F
(x

)

50 node Planetlab Hop Count CDF

Fig. 3: CDF of the number of hops necessary for nodes to
reach each other in the 50 node Planetlab experiments.

Next we deployed the SPOT system on all 50 nodes and
selected an arbitrary node (not one of the 50) to operate
as the bootstrap server. Once the software was deployed, 50
experiments were run withk values of 1, 2, and 3 SNs, where
k represents the number of SNs deployed. The results of the
experiments are shown in Figure 4. These results use the
hop count metric. From the results, the total cost decreases
as the number of SNs increase. This is to be expected as
adding more SNs should decrease the total network cost.
These results are reported using the whisker-box plot that
presents the lower (0.25), median, and upper quartiles (0.75)
of the data. Also included are the minimum and maximum

values. The interquartile range (IQR) is defined as the upper
quartile minus the lower quartile. Also, any value that is 1.5
times the upper quartile or 1.5 times the lower quartile is
consider an outlier and denoted with a circle.

30
0

40
0

50
0

60
0

70
0

Planetlab placement costs for range of SNs on Planetlab

Number of SNs

P
la

ce
m

en
t C

os
t

1 2 3

Fig. 4: 50 node Planetlabr-SPOT experiment using the
number of hops distance metric illustrates the placement
costs fork=1,2, and 3 SNs.

In these experiments we measured the total time to locate
SNs, the number of iterations of the algorithm to assign an
SN and the total amount of network traffic generated from
all of the nodes in the experiment. Due to space constraints
only the time to assign an SN is illustrated, Figure 5. The
remaining data can be seen in [6]. From the results, as the
number of SNs increase, so too does the total time necessary
to assign the SNs.

20
0

40
0

60
0

80
0

Total Time in Planetlab for SNs placement

Number of SuperNodes

T
im

e
(s

ec
on

ds
)

1 2 3

Fig. 5: 50 node Planetlabr-SPOT experiment illustrating the
total time to placek=1, 2, and 3 SNs.

4. Game Servers
4.1 Introduction

The previous results have dealt with SPOT, its ability
to place SNs throughout a network and measurements as-

sociated with it. Ultimately, the improvements that SPOT
provides for applications utilizing its service are important.
In order to evaluate that, we turn our focus to online video
games, namely multi-player first-person shooters. Multi-
player first person shooters (such as Quake III Arena and
Half-Life [7]) are very sensitive to the latency from the
client to the game server. Typically anywhere from 16 - 64
people connect to a single server or host. This host sends
game updates to all players connected to the server. If the
client has a RTT to the server greater than 180 - 200 ms,
it can greatly reduce the quality of the experience as well
as fairness in the game itself [8]. Therefore when creating a
multiplayer game, it is important to choose the game server
carefully.

4.2 Planetlab Evaluation

In order to evaluate the effects of server selection, the
50 node setup in Planetlab was studied. Using these 50
nodes, the ping data collected earlier was used to evaluate the
RTTs letting each node become theserver in a online game.
Therefore, we are interested in the RTT from each client to
that server. From this data 7 of the 50 servers or 14% of the
nodes would be unable to satisfy the requirement that every
node maintain a RTT under 180 ms. This demonstrates the
importance of carefully selecting a SN. The RTTs are shown
in Figure 6.

Next SPOT was run across all 50 nodes withk=1 and it
selected node 8 as the SN, the average RTT is 60 ms to the
SN and the maximum RTT is 139 ms as shown in Figure 7,
from [3]. The optimal value is selecting node 6 as the SN
with an average RTT of 40 ms and a maximum RTT of 118
ms. The worst case selection is node 42, with an average
RTT of 127 ms, a worst case RTT of 1545 ms and three
nodes over the 180 ms threshold.

0
50

0
10

00
15

00

Round Trip Time for 50 nodes in Planetlab

Planetlab node ID

R
ou

nd
 T

rip
 T

im
e

in
 m

ill
is

ec
on

ds

1 3 5 7 9 11 14 17 20 23 26 29 32 35 38 41 44 47 50

Fig. 6: Round Trip Times from each node to all 50 nodes
in Planetlab.

0
50

0
10

00
15

00

Round Trip Times for All Nodes to Single Server in Planetlab

Placement Strategy

R
ou

nd
 T

rip
 T

im
e

in
 m

ill
is

ec
on

ds

Optimal r−SPOT Worst Case

Fig. 7: Round Trip Times from each node to a single server
selected based on the particular placement algorithm times.

4.3 Updating the SN as the topology changes
We are now interested in the effects of a dynamic game

state where players join the game after some period of
time. Here, we are interested in whether it is necessary to
recalculate the location of the SN after a number of new
players join. Consider a 40 player node topology taken from
the original set of 50 nodes in the previous experiment. We
user-SPOT (one of the SPOT algorithms defined in [3]) to
determine a location of the SN (node 7) and measure the
RTT from all the players to that SN. Now suppose 10 more
players join the game and the SN is not re-evaluated with all
50 players. With node 7 still serving as the SN, one of the
new nodes joining is unable to play the game due to a large
RTT (1545 ms to node 7). However, if the SN is re-evaluated
and moved to node 8, all players are able to participate.
The results of this experiment are shown in Figure 8 with a
whisker-box plot of all RTTs. From the figure, when node
7 is the SN in the 40 node experiment the average RTT is
44 ms. Once the 10 additional nodes join, the average RTT
jumps to 81 ms with the outlier node experiencing a large
delay to SN 7. When the topology is re-evaluated the SN
moves to node 8 and the average RTT drops to 60 ms. This
illustrates the importance of re-evaluating the SN assignment
in order to maximize the number of players in the game.

5. Emulation
Emulation experiments with SPOT are now presented.

Two different placement algorithms were developed for
SPOT,r-mod andr-SPOT. Ther-mod algorithm takes a re-
lated approach [3] and adopts it to our problem. Ther-SPOT
algorithm improves uponr-mod with various optimizations
[3]. The network topologies consist of hierarchical networks
of size 100, 200, 300, and 400. The Emulab physical nodes
were of the type pc3000. The pc3000 are 3 GHz Pentium
4 CPUs with 2 GBytes of RAM. There are 160 nodes
on Emulab of this type. In order to create larger sized

0
50

0
10

00
15

00

Round Trip Times for All Nodes to Single Server in Planetlab

Placement Strategy

R
ou

nd
 T

rip
 T

im
e

in
 m

ill
is

ec
on

ds

40 node r−SPOT 50 node with no reassignment of SN 50 node r−SPOT

Fig. 8: Round Trip Times from each node to a single server
for a 40 node topology withr-SPOT SN placement, a 50
node topology using the 40 node SN placement, and a 50
node topology with a newr-SPOT SN placement.

1500

2000

2500

3000

3500

4000

C
o

s
t

Placement costs for k=3

Optimal

Worst Case

0

500

1000

1500

2000

2500

3000

3500

4000

0 50 100 150 200 250 300 350 400 450

C
o

s
t

Number of nodes

Placement costs for k=3

Optimal

Worst Case

r-mod

r-SPOT

Fig. 9: Results of placement for three SNs with various sized
network topologies [3].

networks, virtualization is used with Emulab. The virtual
machine consisted of FreeBSD jails with an assignment of
10 virtual machines per physical node. This allowed for
larger experiments (greater than 160 nodes) while not over-
utilizing a single physical machine. The radius value (r) was
set to 2 in all of the experiments, consistent with related
work [9]. The experiments were evaluated with ak value
(number of SNs) of 1 and 3. The SPOT software was loaded
on each node and a special bootstrap node was also created
running the bootstrap software. Each node ran a script which
would execute the SPOT Java application and connect to the
bootstrap node.

In Figure 9 (from [3]) the results fork=3 show improved
placement forr-SPOT compared tor-mod. For example, in
the 300 node experimentr-SPOT was only 13% above the
optimal compared tor-mod with an average placement cost
that is 61% higher than optimal.

In addition to the cost of the resulting network topology
upon algorithm completion, other metrics of interest are also
evaluated forr-SPOT. The total number of iterations to reach
a finishing state and total system time necessary before the
experiments finished are discussed next.

The first experiment uses a whisker-box plot to display the
system time necessary to locate SNs in a network topology
(Figure 10). From this graph we can see total system time
increase as the number of SNs increase. This is to be
expected as increasing the number of SNs to place increases
the total amount of work and the time to complete it.

15
0

20
0

25
0

30
0

35
0

Time to assign SNs for various SN counts n=100

Number of SuperNodes

T
im

e
(s

ec
on

ds
)

1 2 3

Fig. 10: Total time to place SNs inr-SPOT algorithm.

Additional experiments are run to understand some of
the tradeoffs betweenr-SPOT and an optimal placement
strategy. In Figure 11 the total time to locate three SNs
is computed for various topology sizes in comparison to a
global solution. The global solution requires full topological
information, which is equivalent to increasing the neighbor-
hood size to include all nodes in the network. At the 250
node size it starts to become increasingly more expensive to
place nodes with the centralized optimal solution.

3000

4000

5000

6000

7000

E
x

e
cu

ti
o

n
 T

im
e

 (
se

co
n

d
s)

Execution Time for k=3 SNs

r-SPOT

0

1000

2000

3000

4000

5000

6000

7000

0 50 100 150 200 250 300 350 400 450

E
x

e
cu

ti
o

n
 T

im
e

 (
se

co
n

d
s)

Number of Nodes

Execution Time for k=3 SNs

r-SPOT

Optimal

Fig. 11: Time to place 3 SNs inr-SPOT.

This section has presented the SPOT system deployed on
Emulab using ther-mod andr-SPOT algorithms. The eval-
uation demonstrates the improved placement performance of
ther-SPOT algorithm and how both approaches compare to
the optimal results.

6. Simulation
6.1 Introduction

Simulation provides an excellent opportunity to extend
the previous results to large, and more realistic network

topologies. With research testbeds, a node size limit is
reached somewhere in the hundreds of nodes. In order to
evaluate systems larger than that, simulation is very useful.
Also with simulation, the experiments can easily run on
different topologies.

In order to provide simulation with SPOT, a discrete event
simulator called SPOTSim was developed. SPOTSim was
written in Java and models all of the communication between
nodes running SPOT. It also interfaces with the same ILP
solver (GLPK) as SPOT.

The simulator was developed after creating SPOT, there-
fore the true functionality of the working system was cap-
tured in the simulation environment. Typically a simulator
is developed first and the final implementation ends up
behaving somewhat differently due to real world constraints.
This is much less the case with SPOTSim, which provides
a fairly realistic model of SPOT’s behavior.

6.2 SPOTSim Evaluation
In order to test the validity of the model, experiments

were run on Emulab with SPOT and on SPOTSim with
the topology deployed on Emulab. The first experiment
illustrates the placement scores of both SPOT and SPOTSim
for k=3 in Figure 12.

50
0

10
00

15
00

20
00

25
00

Placement Costs for Emulation and Simulation with k=3 SNs

Number of Nodes

P
la

ce
m

en
t C

os
t

100 Emu 100 Sim 200 Emu 200 Sim 300 Emu 300 Sim 400 Emu 400 Sim

Fig. 12: Comparison of Emulation and Simulation placement
results for various topologies locating three SNs.

Although the simulation and emulation results are closely
related, some differences are found in the more costly
emulation placement results. These results are not captured
by the simulation model. The higher scores in emulation are
due to the missed opportunities for SNs to join with other
SNs and create larger neighborhoods. In the simulator, the
merge operations occur with perfect knowledge of the other
available SNs.

The strength of the simulation model is its ability to
experiment on a larger number of nodes and more interesting
topologies. To accomplish this a topology generator was
used to aid in the design and creation of larger more realistic

topologies. The topology generator used is BRITE [10].
Based on previous related work [9] the BA-2 router level
topology was selected for our simulations. A range of sizes
were created (500, 1000, and 1500 nodes) using the BRITE’s
default growth rate parameters.

Using the three topologies created with BRITE, simu-
lations were performed and the average placement cost is
presented. In Figure 13 SPOTSim and the optimal results
are presented. From the figure, SPOTSim is able to place
SNs with a cost of less than twice that of the optimal.

4000

5000

6000

7000

8000

9000

10000

C
o

s
t

Placement Costs for k=3 SNs

Optimal

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 200 400 600 800 1000 1200 1400 1600

C
o

st

Experiment Size

Placement Costs for k=3 SNs

Optimal

SPOTSim

Fig. 13: Placement costs for SPOTSim simulations compared
against optimal placement costs.

Simulations were also run with various neighborhood
node sizes. Thus far, all simulation and emulation results
were executed with ar or neighborhood size of two units,
where units are some metric such as network hops. In
Figure 14 three different values for the default neighborhood
size are experimented with placingk=3 SNs in the 500
node router topology. From the figure, increasing the default
neighborhood sizer reduces the cost of placing SNs. The
mean placement costs are 1045, 954, and 965 forr values of
1, 2, and 3. A default neighborhood size (r) of two provides
a 7% reduction in median cost and settingr to three reduces
the costs by an additional 1%.

95
0

10
00

11
00

12
00

Placement Costs for 500 node Simulation with k=3 SNs

Default Neighborhood Size

P
la

ce
m

en
t C

os
t

r=1 r=2 r=3

Fig. 14: Whisker-box plot of placement costs for SPOTSim
for 500 nodes with varying initial neighborhood sizes.

6.3 Revisiting the Game Server with Simula-
tion

We now return to the game server placement problem
initially presented using Planetlab. With the simulator we
are able to insert a Planetlab topology into the simulator
to evaluate the performance of SPOT. Due to the unreliable
nature the Internet and Planetlab, evaluating the same set
of more than 50 nodes can be rather challenging. With
this switch to simulation we are able to investigate a larger
topology of 263 Planetlab nodes around the world. The RTTs
were collected to and from all nodes in the evaluation. Next
we evaluated the individual RTT from each node to the
candidate SN. Figure 15 depicts the maximum number of
players that can join the candidate SN server. A player can
join the server if the RTT to that server is less than 180
ms. From the figure, 107 potential SNs can support 200
or more players in a single game (the largest is 236), also
116 potential SNs support 100 or more players. The least
number of players came from the pair of nodes located
in Uruguay, supporting 4 and 5 players each. Finally, a
comparison is provided showing the relation between solving
the k-medians problem and finding an SN that supports the
most number of players. In Figure 16, a bar graph represents
the total number of players that could connect to a single SN
in the best and worst case. Also shown are the results of the
k-medians optimal solution and the SPOTSim solution with
respect to the number of players each SNs supports. From
the results, the maximum number of players in a single game
with the best SN placement is 236 players, while the ILP
solver and SPOTSim selected nodes supporting 227 and 226
players, respectively. This helps to demonstrate the ability of
SPOT to determine SN locations for a first person shooter.

0
50

10
0

15
0

20
0

Maximum number of players to each node as the candidate SN

Distribution of maximum players with each nodes serving as the single SN

N
um

be
r

of
 p

la
ye

rs

Fig. 15: Max players for each nodes as SN.

7. Conclusion
This paper has presented the SPOT system evaluated in

three different environments, experimentation, emulation and

100

150

200

250

T
o

ta
l

P
la

y
e

rs

Total Number of Players for different

placement strategies

Best Opt ILP SPOTSim Worst

Players 236 227 226 4

0

50

100

150

200

250

T
o

ta
l

P
la

y
e

rs

Total Number of Players for different

placement strategies

Fig. 16: Number of players supported for various SN selec-
tion strategies.

simulation. This research demonstrates a fully functioning
P2P system that provides SN placement for a range of appli-
cations. An example application with SPOT locating a game
server showcases the benefits of this network application.

Through this variety of experiments a better understanding
of the performance of SPOT is gained. This work motivates
the use of different domains to evaluate a large distributed
system. Finally, the creation of the SPOTSim simulator al-
lows researches to discover the impact of different placement
algorithms on a much wider set of network topologies.

References
[1] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold,

M. Hibler, C. Barb, and A. Joglekar, “An integrated experimental
environment for distributed systems and networks,” inProc. of 5th
Symp. on Operating Systems Design and Implementation, Dec. 2002,
pp. 255–270.

[2] L. Peterson, T. Anderson, D. Culler, and T. Roscoe, “A blueprint
for introducing disruptive technology into the internet,”SIGCOMM
Comput. Commun. Rev., vol. 33, no. 1, pp. 59–64, 2003.

[3] T. Sproull and R. Chamberlain, “Distributed algorithmsfor the place-
ment of network services,” inInternational Conference on Internet
Computing, Las Vegas, NV, Jul. 2010.

[4] “GLPK - GNU Linear Programming Kit.” [Online]. Available:
http://www.gnu.org/software/glpk/

[5] G. Smaragdakis, V. Lekakis, N. Laoutaris, A. Bestavros,J. W. Byers,
and M. Roussopoulos, “The EGOIST Overlay Routing System,” in
Proceedings of ACM CoNEXT 2008, Madrid, Spain, December 2008.

[6] T. Sproull, “Design and evaluation of distributed algorithms for place-
ment of network services,” PhD Dissertation, Washington University
in Saint Louis, Department of Computer Science and Engineering,
Aug. 2009.

[7] G. Armitage, M. Claypool, and P. Branch,Networking and Online
Games: Understanding and Engineering Multiplayer Internet Games.
John Wiley & Sons, June 2006.

[8] G. Armitage and P. Branch, “Distribution of first person shooter online
multiplayer games,”International Journal of Advanced Media and
Communication, vol. 1, no. 1, pp. 59–75, October 2005.

[9] N. Laoutaris, G. Smaragdakis, K. Oikonomou, I. Stavrakakis, and
A. Bestavros, “Distributed placement of service facilities in large-
scale networks,” inIEEE Infocom 2007, Anchorage, AK, May 2007.

[10] A. Medina and J. Beyers, “Brite: an approach to universal topology
generation,”9th Int’l Symposium on Modeling, Analysis and Simula-
tion of Computer and Telecommunication Systems, August 2001.

